Difference between revisions of "1970 Canadian MO Problems/Problem 8"
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
− | {{ | + | |
+ | Point on <math>y=x</math> line: <math>(a,a)</math> | ||
+ | |||
+ | Point on <math>y=2x</math> line: <math>(b,2b)</math> | ||
+ | |||
+ | Then, | ||
+ | |||
+ | <math>(b-a)^2+(2b-a)^2=4^2</math> | ||
+ | |||
+ | <math>5b^2-6ab+2a^2-16=0</math> | ||
+ | |||
+ | Using the quadratic equation, | ||
+ | |||
+ | <math>b=\frac{3a \pm \sqrt{80 - a^2}}{5}</math> | ||
+ | |||
+ | <math>x=\frac{b+a}{2}=\frac{8a \pm \sqrt{80 - a^2}}{10}</math> | ||
+ | |||
+ | <math>y=\frac{2b+a}{2}=\frac{11a \pm 2\sqrt{80 - a^2}}{10}</math> | ||
+ | |||
+ | |||
+ | ~Tomas Diaz. orders@tomasdiaz.com | ||
+ | |||
+ | {{alternate solutions}} |
Revision as of 01:18, 28 November 2023
Problem
Consider all line segments of length 4 with one end-point on the line y=x and the other end-point on the line y=2x. Find the equation of the locus of the midpoints of these line segments.
Solution
Point on line:
Point on line:
Then,
Using the quadratic equation,
~Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.