Difference between revisions of "1970 Canadian MO Problems/Problem 8"

Line 18: Line 18:
  
 
<math>b=\frac{3a \pm \sqrt{80 - a^2}}{5}</math>
 
<math>b=\frac{3a \pm \sqrt{80 - a^2}}{5}</math>
 +
 +
Midpoint <math>x</math> and <math>y</math> as follows:
  
 
<math>x=\frac{b+a}{2}=\frac{8a \pm \sqrt{80 - a^2}}{10}</math>
 
<math>x=\frac{b+a}{2}=\frac{8a \pm \sqrt{80 - a^2}}{10}</math>

Revision as of 01:26, 28 November 2023

Problem

Consider all line segments of length 4 with one end-point on the line y=x and the other end-point on the line y=2x. Find the equation of the locus of the midpoints of these line segments.

Solution

Point on $y=x$ line: $(a,a)$

Point on $y=2x$ line: $(b,2b)$

Then,

$(b-a)^2+(2b-a)^2=4^2$

$5b^2-6ab+2a^2-16=0$

Using the quadratic equation,

$b=\frac{3a \pm \sqrt{80 - a^2}}{5}$

Midpoint $x$ and $y$ as follows:

$x=\frac{b+a}{2}=\frac{8a \pm \sqrt{80 - a^2}}{10}$

$y=\frac{2b+a}{2}=\frac{11a \pm 2\sqrt{80 - a^2}}{10}$

Solving for $\sqrt{80 - a^2}$ we have:

$\pm \sqrt{80 - a^2}=10x-8a=\frac{10y-11a}{2}$

Solving for $a$ we get:

$a=4x-2y$ which we put into one of the equations for x as:

$x=\frac{8(4x-2y) \pm \sqrt{80 - (4x-2y)^2}}{10}$

and after a lot of algebra gives us the equation for the midpoints to be the ellipse:

$25x^2-36xy+13y^2-4=0$


~Tomas Diaz. orders@tomasdiaz.com

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.