Difference between revisions of "2006 Canadian MO Problems/Problem 1"

Line 8: Line 8:
  
 
{{CanadaMO box|year=2006|before=First question|num-a=2}}
 
{{CanadaMO box|year=2006|before=First question|num-a=2}}
 
The number of ways of distributing k candies to 2006 children is equal to the number of ways of distributing
 
0 to a particular child and k to the rest, plus the number of ways of distributing 1 to the particular child and k ¡ 1
 
to the rest, plus the number of ways of distributing 2 to the particular child and k ¡ 2 to the rest. Thus f(2006; k) =
 
f(2005; k) + f(2005; k ¡ 1) + f(2005; k ¡ 2), so that the required sum is
 
1 +
 
1003 X
 
k=1
 
f(2005; k) :
 
In evaluating f(n; k), suppose that there are r children who receive 2 candies; these r children can be chosen in ¡n
 
r
 
¢
 
ways.
 
Then there are k ¡ 2r candies from which at most one is given to each of n ¡ r children. Hence
 
f(n; k) =
 
b
 
X
 
k=2c
 
r=0
 
µ
 
n
 
r
 
¶µ n ¡ r
 
k ¡ 2r
 
 
=
 
X1
 
r=0
 
µ
 
n
 
r
 
¶µ n ¡ r
 
k ¡ 2r
 
 
;
 
with ¡
 
x
 
y
 
¢
 
= 0 when x < y and when y < 0. The answer is
 
1003 X
 
k=0
 
X1
 
r=0
 
µ
 
2005
 
r
 
¶µ2005 ¡ r
 
k ¡ 2r
 
 
=
 
X1
 
r=0
 
µ
 
2005
 
r
 
¶ 1003 X
 
k=0
 
µ
 
2005 ¡ r
 
k ¡ 2r
 
 
:
 

Revision as of 10:32, 30 November 2023

Problem

Let $f(n,k)$ be the number of ways distributing $k$ candies to $n$ children so that each child receives at most two candies. For example, $f(3,7)=0$, $f(3,6)=1$, and $f(3,4)=6$. Evaluate $f(2006,1)+f(2006,4)+f(2006,7)+\dots+f(2006,1003)$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2006 Canadian MO (Problems)
Preceded by
First question
1 2 3 4 5 Followed by
Problem 2