Difference between revisions of "Bisector"
(→Proportions for bisectors) |
(→Proportions for bisectors) |
||
Line 37: | Line 37: | ||
<cmath>\frac {CD}{AE} = \frac {BC}{AB} = \frac {a}{c}.</cmath> | <cmath>\frac {CD}{AE} = \frac {BC}{AB} = \frac {a}{c}.</cmath> | ||
<cmath>\frac {DI}{IE} = \frac {DI}{CD} \cdot \frac {AE}{IE}\cdot \frac {CD}{AE}= \frac {c}{a+b+c} \cdot \frac {a+b+c} {a} \cdot \frac {a}{c} = 1.</cmath> | <cmath>\frac {DI}{IE} = \frac {DI}{CD} \cdot \frac {AE}{IE}\cdot \frac {CD}{AE}= \frac {c}{a+b+c} \cdot \frac {a+b+c} {a} \cdot \frac {a}{c} = 1.</cmath> | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Bisector and circumcircle== | ||
+ | [[File:Bisector division.png|350px|right]] | ||
+ | Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c</math> be given. | ||
+ | Let segments <math>AA', BB',</math> and <math>CC'</math> be the bisectors of <math>\triangle ABC.</math> | ||
+ | The lines <math>AA', BB',</math> and <math>CC'</math> meet circumcircle <math>ABC (\Omega</math> at points <math>D, E, F,</math> respectively. | ||
+ | Find <math>\frac {B'I}{B'E}, \frac {DF}{AC}. </math> | ||
+ | Prove that circumcenter of <math>\triangle BA'I</math> lies on <math>DF.</math> | ||
+ | |||
+ | <i><b>Solution</b></i> | ||
+ | |||
+ | <cmath>\frac {B'I}{B'E} = \frac {B'I}{BB'} \cdot \frac {BB'^2}{B'E \cdot BB'} = \frac {a+c}{a + b +c} \cdot \frac {BB'^2}{B'A \cdot B'C}.</cmath> | ||
+ | |||
+ | <cmath>BB'^2 = 4 \cos^2 \beta \frac {a^2 c^2}{(a+c)^2}, 4 \cos^2 \beta = \frac {(a+b+c)(a – b +c)}{ac}, B'A \cdot B'C = \frac {ab}{a+c} \cdot {bc}{a+c} = \frac {a b^2 c}{(a+c)^2}</cmath> | ||
+ | <cmath>\frac {B'I}{B'E} = \frac {a+c}{b} -1.</cmath> | ||
+ | |||
+ | <cmath>\angle IAC = \angle DAC = \angle CFD = \angle IFD, \angle FID = \angle AIC \implies \triangle IFD \sim \triangle IAC.</cmath> | ||
+ | <cmath>\frac {DF}{AC} = \frac {IF}{AI}.</cmath> | ||
+ | <cmath>AI = \sqrt {bc \frac {b+c-a}{a+b+c}}, FI = c \sqrt {\frac {ab}{(a+b-c)(a+b+c)}}.</cmath> | ||
+ | <cmath>\frac {DF}{AC} = \frac {IF}{AI} = \sqrt {\frac {ac}{(a+b-c)(-a+b+c)}}.</cmath> | ||
+ | <cmath>\overset{\Large\frown} {BD} + \overset{\Large\frown} {FA} + \overset{\Large\frown} {AE}= \angle BAC + \angle ACB + \angle ABC = 180^circ \implies FD \perp BE.</cmath> | ||
+ | <cmath>2\angle IBD = 2\angle EBD = \overset{\Large\frown} {EC} + \overset{\Large\frown} {CD} = \overset{\Large\frown} {AE} + \overset{\Large\frown} {BD} = 2 \angle BID.</cmath> | ||
+ | Incenter <math>J</math> belong the bisector <math>BI</math> which is the median of isosceles <math>\triangle IDB.</math> | ||
+ | |||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' |
Revision as of 16:35, 9 December 2023
Division of bisector
Let a triangle be given.
Let and be the bisectors of
he segments and meet at point Find
Solution
Similarly
Denote Bisector
Bisector vladimir.shelomovskii@gmail.com, vvsss
Proportions for bisectors
The bisectors and of a triangle ABC with meet at point
Prove
Proof
Denote the angles and are concyclic. The area of the is vladimir.shelomovskii@gmail.com, vvsss
Bisector and circumcircle
Let a triangle be given. Let segments and be the bisectors of The lines and meet circumcircle at points respectively. Find Prove that circumcenter of lies on
Solution
Incenter belong the bisector which is the median of isosceles
vladimir.shelomovskii@gmail.com, vvsss