Difference between revisions of "1993 OIM Problems/Problem 3"

(Created page with "== Problem == Let <math>N*={1,2,3,\cdots }</math>. Find all functions <math>f: N* \to N*</math> such that: i. If <math>x < y</math> then <math>f(x) < f(y)</math> ii. <math>f...")
 
 
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math>N*={1,2,3,\cdots }</math>. Find all functions <math>f: N* \to N*</math> such that:
+
Let <math>N^*={1,2,3,\cdots }</math>. Find all functions <math>f: N^* \to N^*</math> such that:
  
 
i. If <math>x < y</math> then <math>f(x) < f(y)</math>
 
i. If <math>x < y</math> then <math>f(x) < f(y)</math>
  
ii. <math>f(y(f(x)) = x^2 f(xy)</math>, for all <math>x</math>, and <math>y</math> in <math>N*</math>.
+
ii. <math>f(y(f(x)) = x^2 f(xy)</math>, for all <math>x</math>, and <math>y</math> in <math>N^*</math>.
  
 
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
 
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Latest revision as of 13:15, 13 December 2023

Problem

Let $N^*={1,2,3,\cdots }$. Find all functions $f: N^* \to N^*$ such that:

i. If $x < y$ then $f(x) < f(y)$

ii. $f(y(f(x)) = x^2 f(xy)$, for all $x$, and $y$ in $N^*$.

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

https://www.oma.org.ar/enunciados/ibe8.htm