Difference between revisions of "2021 WSMO Team Round Problems/Problem 4"
(Created page with "==Problem== Consider a triangle <math>A_1B_1C_1</math> satisfying <math>A_1B_1=3,B_1C_1=3\sqrt{3},A_1C_1=6</math>. For all successive triangles <math>A_nB_nC_n</math>, we have...") |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Consider a triangle <math>A_1B_1C_1</math> satisfying <math>A_1B_1=3,B_1C_1=3\sqrt{3},A_1C_1=6</math>. For all successive triangles <math>A_nB_nC_n</math>, we have <math>A_nB_nC_n\sim B_{n-1}A_{n-1}C_{n-1}</math> and <math>A_n=B_{n-1},C_n=C_{n-1}</math>, where <math>A_nB_nC_n</math> is outside of <math>A_{n-1}B_{n-1}C_{n-1}</math>. Find the value of<cmath>\left(\sum_{i=1}^{\infty}[A_iB_iC_i]\right)^2,</cmath>where <math>[A_iB_iC_i]</math> is the area of <math>A_iB_iC_i</math>. | + | Consider a triangle <math>A_1B_1C_1</math> satisfying <math>A_1B_1=3,B_1C_1=3\sqrt{3},A_1C_1=6</math>. For all successive triangles <math>A_nB_nC_n</math>, we have <math>A_nB_nC_n\sim B_{n-1}A_{n-1}C_{n-1}</math> and <math>A_n=B_{n-1},C_n=C_{n-1}</math>, where <math>A_nB_nC_n</math> is outside of <math>A_{n-1}B_{n-1}C_{n-1}</math>. Find the value of <cmath>\left(\sum_{i=1}^{\infty}[A_iB_iC_i]\right)^2,</cmath> where <math>[A_iB_iC_i]</math> is the area of <math>A_iB_iC_i</math>. |
+ | |||
+ | ''Proposed by pinkpig'' | ||
==Solution== | ==Solution== |
Latest revision as of 21:16, 15 December 2023
Problem
Consider a triangle satisfying . For all successive triangles , we have and , where is outside of . Find the value of where is the area of .
Proposed by pinkpig