Difference between revisions of "2002 AMC 12P Problems/Problem 1"
(→Solution 1) |
(→Solution 1) |
||
Line 24: | Line 24: | ||
<math>\textbf{(E)}</math> because <math>5^5</math> is an odd power. | <math>\textbf{(E)}</math> because <math>5^5</math> is an odd power. | ||
+ | |||
This leaves option <math>\textbf{(C)},</math> in which <math>4^5=2^2^5=2^10</math>, and since <math>10,</math> <math>4,</math> and <math>6</math> are all even, it is a perfect square. Thus, our answer is <math>\box{\textbf{(C)} 4^4 5^4 6^6}</math>. | This leaves option <math>\textbf{(C)},</math> in which <math>4^5=2^2^5=2^10</math>, and since <math>10,</math> <math>4,</math> and <math>6</math> are all even, it is a perfect square. Thus, our answer is <math>\box{\textbf{(C)} 4^4 5^4 6^6}</math>. | ||
Revision as of 00:43, 30 December 2023
Problem
Which of the following numbers is a perfect square?
Solution 1
For a positive integer to be a perfect square, all the primes in its prime factorization must have an even exponent. With a quick glance at the answer choices, we can eliminate options
because is an odd power
because and is an odd power
because and is an odd power, and
because is an odd power.
This leaves option in which $4^5=2^2^5=2^10$ (Error compiling LaTeX. Unknown error_msg), and since and are all even, it is a perfect square. Thus, our answer is $\box{\textbf{(C)} 4^4 5^4 6^6}$ (Error compiling LaTeX. Unknown error_msg).
See also
2002 AMC 12P (Problems • Answer Key • Resources) | |
Preceded by First question |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.