Difference between revisions of "2002 AMC 12P Problems/Problem 4"
(→Problem) |
(→Solution) |
||
Line 17: | Line 17: | ||
</math> | </math> | ||
− | == Solution == | + | == Solution 1== |
− | + | For sake of speed, WLOG, let <math>b=1</math>. This means that the ratio <math>\frac{a}{b}</math> will simply be <math>a</math> because <math>\frac{a}{b}=\frac{a}{1}=a.</math> Solving for <math>a</math> with some very simple algebra gives us a quadratic which is <math>5a^2 -9a +4=0</math>. Factoring the quadratic gives us <math>(5a-4)(a-1)=0</math>. Therefore, $a= | |
== See also == | == See also == | ||
{{AMC12 box|year=2002|ab=P|num-b=3|num-a=5}} | {{AMC12 box|year=2002|ab=P|num-b=3|num-a=5}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:47, 30 December 2023
Problem
Let and be distinct real numbers for which
Find
Solution 1
For sake of speed, WLOG, let . This means that the ratio will simply be because Solving for with some very simple algebra gives us a quadratic which is . Factoring the quadratic gives us . Therefore, $a=
See also
2002 AMC 12P (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.