Difference between revisions of "2024 AMC 8 Problems/Problem 19"
(→Video Solution 3 by SpreadTheMathLove) |
|||
Line 7: | Line 7: | ||
==Solution== | ==Solution== | ||
Jordan has <math>10</math> high top sneakers, and <math>6</math> white sneakers. We would want as many white high-top sneakers as possible, so we set <math>6</math> high-top sneakers to be white. Then, we have <math>10-6=4</math> red high-top sneakers, so the answer is <math>\boxed{\dfrac{4}{15}}.</math> | Jordan has <math>10</math> high top sneakers, and <math>6</math> white sneakers. We would want as many white high-top sneakers as possible, so we set <math>6</math> high-top sneakers to be white. Then, we have <math>10-6=4</math> red high-top sneakers, so the answer is <math>\boxed{\dfrac{4}{15}}.</math> | ||
+ | ~andliu766 | ||
==Solution 1== | ==Solution 1== |
Revision as of 17:20, 26 January 2024
Contents
[hide]Problem
Jordan owns 15 pairs of sneakers. Three fifths of the pairs are red and the rest are white. Two thirds of the pairs are high-top and the rest are low-top. The red high-top sneakers make up a fraction of the collection. What is the least possible value of this fraction?
Solution
Jordan has high top sneakers, and white sneakers. We would want as many white high-top sneakers as possible, so we set high-top sneakers to be white. Then, we have red high-top sneakers, so the answer is ~andliu766
Solution 1
We first start by finding the amount of red and white sneakers. 3/5 * 15=9 red sneakers, so 6 are white sneakers. Then 2/3 * 15=10 are high top sneakers, so 5 are low top sneakers. Now think about 15 slots and the first 10 are labeled high top sneakers. if we insert the last 5 sneakers as red sneakers there are 4 leftover over red sneakers. Putting those four sneakers as high top sneakers we have are answer as C or
-Multpi12
Video Solution 1 by Math-X (First fully understand the problem!!!)
https://www.youtube.com/watch?v=eYnLh_SGy7c
~Math-X
Video Solution 2 by OmegaLearn.org
Video Solution 3 by SpreadTheMathLove
https://www.youtube.com/watch?v=Svibu3nKB7E