Difference between revisions of "SANSKAR'S OG PROBLEMS"

(Solution 1 by ddk001 (Casework))
(Solution 1 by ddk001 (Casework))
Line 72: Line 72:
 
Hence, there is no positive integers <math>a</math> and <math>b</math> between <math>1</math> and <math>9</math> inclusive such that <math>a!+b!=\overline{ab}^2</math>.
 
Hence, there is no positive integers <math>a</math> and <math>b</math> between <math>1</math> and <math>9</math> inclusive such that <math>a!+b!=\overline{ab}^2</math>.
  
'''Case 2:<math>a=b</math>'''
+
'''Case 2: <math>a=b</math>'''
 +
 
 +
For this case, we must have
 +
 
 +
<cmath>(11a)^2=\overline{ab}^2=a!+b!=2a! \implies 11|a!</cmath>
 +
 
 +
which is impossible if a is a integer and <math>1 \le a \le 9</math>.
 +
 
 +
'''Case 3: <math>a<b</math>'''
  
 
==Problem2 ==
 
==Problem2 ==
 
For any [[positive integer]] <math>n</math>, <math>n</math>>1 can <math>n!</math> be a [[perfect square]]? If yes, give one such <math>n</math>. If no, then prove it.
 
For any [[positive integer]] <math>n</math>, <math>n</math>>1 can <math>n!</math> be a [[perfect square]]? If yes, give one such <math>n</math>. If no, then prove it.

Revision as of 21:30, 28 January 2024

Hi, this page is created by ...~ SANSGANKRSNGUPTA This page contains exclusive problems made by me myself. I am the creator of these OG problems. What OG stands for is a secret! Please post your solutions with your name. If you view this page please increment the below number by one:

      $02$

Problem 1

Let $\overline{ab}$ be a 2-digit positive integer satisfying $\overline{ab}^2=a! +b!$. Find $a+b$ .

Solution 1 by ddk001 (Casework)

Case 1: $a>b$

In this case, we have

\[\overline{ab}^2=a! +b!=(1+a \cdot (a-1) \cdot \dots \cdot (b+1)) \cdot b! \implies b!|\overline{ab}^2=(10a+b)^2\].

If $b \ge 5$, we must have

\[10|b!|\overline{ab}^2=(10a+b)^2 \implies 10|(10a+b)^2=100a^2+20ab+b^2 \implies 10|b \implies b=0\]

, but this contradicts the original assumption of $b \ge 5$, so hence we must have $b \le 4$.

With this in mind, we consider the unit digit of $\overline{ab}^2$.

Subcase 1.1: $a>b=1$

In this case, we have that

\[a! \equiv \overline{ab}^2-b! \equiv (10a+1)^2-1 \equiv 0 \pmod{10} \implies 10|a! \implies a \ge 5\].

There is no apparent contradiction here, so we leave this as it is.

Subcase 1.2: $a>b=2$

In this case, we have that

\[a! \equiv \overline{ab}^2-b! \equiv (10a+2)^2-2 \equiv 2 \pmod{10} \implies a! \equiv 2 \pmod{10} \implies a=2\].

This contradicts with the fact that $a>b$, so this is impossible.

Subcase 1.3: $a>b=3$

In this case, we have that

\[a! \equiv \overline{ab}^2-b! \equiv (10a+3)^2-6 \equiv 3 \pmod{10}\].

However, this is impossible for all $a$.

Subcase 1.4: $a>b=4$

In this case, we have that

\[a! \equiv \overline{ab}^2-b! \equiv (10a+4)^2-24 \equiv 2 \pmod{10}\].

Again, this yields $a=2$, which, again, contradicts $a>b$. $\square$

Hence, we must have $b=1$.

Now, with $b$ determined by modular arithmetic, we actually plug in the values.

To simplify future calculations, note that

\[a!=\overline{ab}^2-b!=(10a+1)^2-1=100a^2+20a=10a(a+2)\].

For $a=5$, this does not hold.

For $a=6$, this does not hold.

For $a=7$, this does not hold.

For $a=8$, this does not hold.

For $a=9$, this does not hold.

Hence, there is no positive integers $a$ and $b$ between $1$ and $9$ inclusive such that $a!+b!=\overline{ab}^2$.

Case 2: $a=b$

For this case, we must have

\[(11a)^2=\overline{ab}^2=a!+b!=2a! \implies 11|a!\]

which is impossible if a is a integer and $1 \le a \le 9$.

Case 3: $a<b$

Problem2

For any positive integer $n$, $n$>1 can $n!$ be a perfect square? If yes, give one such $n$. If no, then prove it.