Difference between revisions of "2024 AMC 8 Problems/Problem 20"
(→Solution 1) |
(→Solution 1) |
||
Line 31: | Line 31: | ||
The only equilateral triangles that can be formed are through the diagonals of the faces of the square. From P you have <math>3</math> possible vertices that are possible to form a diagonal through one of the faces. Therefore, there are <math>3</math> possible triangles. So the answer is <math>\boxed{\textbf{(D) }3}</math> | The only equilateral triangles that can be formed are through the diagonals of the faces of the square. From P you have <math>3</math> possible vertices that are possible to form a diagonal through one of the faces. Therefore, there are <math>3</math> possible triangles. So the answer is <math>\boxed{\textbf{(D) }3}</math> | ||
− | ~Math645 | + | ~Math645 & e___ from Evergreen Middle School |
~andliu766 | ~andliu766 | ||
Revision as of 17:22, 31 January 2024
Contents
[hide]- 1 Problem
- 2 Solution 1
- 3 Solution 2
- 4 Video Solution 1 by Math-X (First understand the problem!!!)
- 5 Video Solution by NiuniuMaths (Easy to understand!)
- 6 Video Solution by Power Solve
- 7 Video Solution 2 by OmegaLearn.org
- 8 Video Solution 3 by SpreadTheMathLove
- 9 Video Solution by CosineMethod [🔥Fast and Easy🔥]
- 10 See Also
Problem
Any three vertices of the cube , shown in the figure below, can be connected to form a triangle. (For example, vertices , , and can be connected to form isosceles .) How many of these triangles are equilateral and contain as a vertex?
Solution 1
The only equilateral triangles that can be formed are through the diagonals of the faces of the square. From P you have possible vertices that are possible to form a diagonal through one of the faces. Therefore, there are possible triangles. So the answer is ~Math645 & e___ from Evergreen Middle School ~andliu766
Solution 2
Each other compatible point must be an even number of edges away from P, so the compatible points are R, V, and T. Therefore, we must choose two of the three points, because P must be a point in the triangle. So, the answer is
-ILoveMath31415926535
Video Solution 1 by Math-X (First understand the problem!!!)
https://youtu.be/BaE00H2SHQM?si=QSxNpXGLosdIpffx&t=5954
~Math-X
Video Solution by NiuniuMaths (Easy to understand!)
https://www.youtube.com/watch?v=V-xN8Njd_Lc
~NiuniuMaths
Video Solution by Power Solve
https://www.youtube.com/watch?v=7_reHSQhXv8
Video Solution 2 by OmegaLearn.org
Video Solution 3 by SpreadTheMathLove
https://www.youtube.com/watch?v=Svibu3nKB7E
Video Solution by CosineMethod [🔥Fast and Easy🔥]
https://www.youtube.com/watch?v=Xg-1CWhraIM
See Also
2024 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.