Difference between revisions of "2025 AMC 8 Problems"
m (Edit minore) |
m (Font) |
||
Line 1: | Line 1: | ||
− | 1) Let m and n be 2 integers such that m > n. Suppose m + n = 20, | + | <math>1)</math> Let <math>m</math> and <math>n</math> be <math>2</math> integers such that <math>m>n</math>. Suppose <math>m+n=20</math>, <math>m^2+n^2=328</math>, find <math>m^2-n^2</math>. |
− | A) 280 B) 292 C) 300 D) 320 E) 340 | + | <math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math> |
− | 2) | + | <math>2)</math> |
Revision as of 07:38, 18 February 2024
Let and be integers such that . Suppose , , find .