Difference between revisions of "2025 AMC 8 Problems"

m (Edit minore)
m (Font)
Line 1: Line 1:
1) Let m and n be 2 integers such that m > n. Suppose m + n = 20, + = 328, find - .
+
<math>1)</math> Let <math>m</math> and <math>n</math> be <math>2</math> integers such that <math>m>n</math>. Suppose <math>m+n=20</math>, <math>m^2+n^2=328</math>, find <math>m^2-n^2</math>.
  
A) 280 B) 292 C) 300 D) 320 E) 340
+
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math>
  
  
2)
+
<math>2)</math>

Revision as of 07:38, 18 February 2024

$1)$ Let $m$ and $n$ be $2$ integers such that $m>n$. Suppose $m+n=20$, $m^2+n^2=328$, find $m^2-n^2$.

$\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340$


$2)$