Difference between revisions of "2025 AMC 8 Problems"
m (Font) |
m (Font) |
||
Line 1: | Line 1: | ||
− | + | ==Problem 1== | |
+ | |||
+ | Let <math>m</math> and <math>n</math> be <math>2</math> integers such that <math>m>n</math>. Suppose <math>m+n=20</math>, <math>m^2+n^2=328</math>, find <math>m^2-n^2</math>. | ||
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math> | <math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math> | ||
− | + | ==Problem 2== | |
− |
Revision as of 07:40, 18 February 2024
Problem 1
Let and be integers such that . Suppose , , find .