Difference between revisions of "2025 AMC 8 Problems"

m (Font)
m (Font)
Line 1: Line 1:
<math>1)</math> Let <math>m</math> and <math>n</math> be <math>2</math> integers such that <math>m>n</math>. Suppose <math>m+n=20</math>, <math>m^2+n^2=328</math>, find <math>m^2-n^2</math>.
+
==Problem 1==
 +
 
 +
Let <math>m</math> and <math>n</math> be <math>2</math> integers such that <math>m>n</math>. Suppose <math>m+n=20</math>, <math>m^2+n^2=328</math>, find <math>m^2-n^2</math>.
  
 
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math>
 
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math>
  
 
+
==Problem 2==
<math>2)</math>
 

Revision as of 07:40, 18 February 2024

Problem 1

Let $m$ and $n$ be $2$ integers such that $m>n$. Suppose $m+n=20$, $m^2+n^2=328$, find $m^2-n^2$.

$\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340$

Problem 2