Difference between revisions of "1960 IMO Problems/Problem 2"
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | {{ | + | Set <math>x = -\frac{1}{2} + \frac{a^2}{2}</math>, where <math>a\ge0</math>. |
+ | <math>\frac{4(-\frac{1}{2}+\frac{a^2}{2})^2}{(1-\sqrt{1+2(-\frac{1}{2}+\frac{a^2}{2})})^2}<2x+9</math> | ||
+ | |||
+ | After simplifying, we get | ||
+ | <math>(a+1)^2<a^2+8</math> | ||
+ | |||
+ | So | ||
+ | <math>a^2+2a+1<a^2+8</math> | ||
+ | |||
+ | Which gives <math>a<\frac{7}{2}</math> and hence <math>x<\frac{45}{8}</math>. | ||
+ | |||
+ | But <math>x=0</math> makes the RHS indeterminate. | ||
+ | |||
+ | So, answer: <math>x<\frac{45}{8}</math>, except <math>x=0</math>. | ||
+ | |||
==See Also== | ==See Also== |
Revision as of 10:07, 28 December 2007
Problem
For what values of the variable does the following inequality hold:
Solution
Set , where .
After simplifying, we get
So
Which gives and hence .
But makes the RHS indeterminate.
So, answer: , except .
See Also
1960 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |