Difference between revisions of "2000 IMO Problems/Problem 2"

(Problem)
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
{{solution}}
+
There exist positive reals <math>x</math>, <math>y</math>, <math>z</math> such that <math>a = \frac{x}{y}</math>, <math>b = \frac{y}{z}</math>, <math>c = \frac{z}{x}</math>. The inequality then rewrites as <cmath>\left(\frac{x-y+z}{y}\right)\left(\frac{y-z+x}{z}\right)\left(\frac{z-x+y}{x}\right)\leq 1</cmath>
 +
or <cmath>(x-y+z)(y-z+x)(z-x+y)\leq xyz.</cmath> Set <math>p=x-y+z</math>,<math>q=y-z+x</math>,<math>r=z-x+y</math>, we get <cmath>8pqr\leq(p+q)(q+r)(r+p).</cmath>
 +
Since at most one of <math>p,q,r</math> can be negative (if 2 or more are negative, then one of <math>a,b,c</math> will become negative), for all positive we apply AM-GM, for one negative we have <math>LHS<0<RHS</math>.
  
 
==See Also==
 
==See Also==
  
 
{{IMO box|year=2000|num-b=1|num-a=3}}
 
{{IMO box|year=2000|num-b=1|num-a=3}}

Revision as of 21:26, 6 March 2024

Problem

Let $a, b, c$ be positive real numbers with $abc=1$. Show that

\[\left( a-1+\frac{1}{b} \right)\left( b-1+\frac{1}{c} \right)\left( c-1+\frac{1}{a} \right) \le 1\]

Solution

There exist positive reals $x$, $y$, $z$ such that $a = \frac{x}{y}$, $b = \frac{y}{z}$, $c = \frac{z}{x}$. The inequality then rewrites as \[\left(\frac{x-y+z}{y}\right)\left(\frac{y-z+x}{z}\right)\left(\frac{z-x+y}{x}\right)\leq 1\] or \[(x-y+z)(y-z+x)(z-x+y)\leq xyz.\] Set $p=x-y+z$,$q=y-z+x$,$r=z-x+y$, we get \[8pqr\leq(p+q)(q+r)(r+p).\] Since at most one of $p,q,r$ can be negative (if 2 or more are negative, then one of $a,b,c$ will become negative), for all positive we apply AM-GM, for one negative we have $LHS<0<RHS$.

See Also

2000 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions