Difference between revisions of "2002 AMC 12P Problems/Problem 11"

m (Solution)
m (Solution)
Line 18: Line 18:
 
== Solution ==
 
== Solution ==
 
We may write <math>\frac{1}{t_n}</math> as <math>\frac{2}{n(n+1)}</math> and do a partial fraction decomposition.
 
We may write <math>\frac{1}{t_n}</math> as <math>\frac{2}{n(n+1)}</math> and do a partial fraction decomposition.
Assume <math>\frac{2}{n(n+1)} = \frac{A_1}{n} + \frac{A_2}{n+1}</math>. Multiplying both sides by <math>n(n+1)</math> gives <cmath>2 = A_1(n+1) + A_2(n)</cmath>.
+
Assume <math>\frac{2}{n(n+1)} = \frac{A_1}{n} + \frac{A_2}{n+1}</math>. Multiplying both sides by <math>n(n+1)</math> gives <math>2 = A_1(n+1) + A_2(n)</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=10|num-a=12}}
 
{{AMC12 box|year=2002|ab=P|num-b=10|num-a=12}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:37, 10 March 2024

Problem

Let $t_n = \frac{n(n+1)}{2}$ be the $n$th triangular number. Find

\[\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + ... + \frac{1}{t_{2002}}\]

$\text{(A) }\frac {4003}{2003} \qquad \text{(B) }\frac {2001}{1001} \qquad \text{(C) }\frac {4004}{2003} \qquad \text{(D) }\frac {4001}{2001} \qquad \text{(E) }2$

Solution

We may write $\frac{1}{t_n}$ as $\frac{2}{n(n+1)}$ and do a partial fraction decomposition. Assume $\frac{2}{n(n+1)} = \frac{A_1}{n} + \frac{A_2}{n+1}$. Multiplying both sides by $n(n+1)$ gives $2 = A_1(n+1) + A_2(n)$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png