Difference between revisions of "2002 AMC 12P Problems/Problem 24"

m (Solution)
m (Solution)
Line 16: Line 16:
 
== Solution ==
 
== Solution ==
 
Assume points <math>P</math>, <math>Q</math>, and <math>R</math> are on faces <math>ABD</math>, <math>ACD</math>, and <math>BCD</math> respectively such that <math>EP \perp ABD</math>, <math>EQ \perp ACD</math>, and <math>ER \perp BCD</math>.
 
Assume points <math>P</math>, <math>Q</math>, and <math>R</math> are on faces <math>ABD</math>, <math>ACD</math>, and <math>BCD</math> respectively such that <math>EP \perp ABD</math>, <math>EQ \perp ACD</math>, and <math>ER \perp BCD</math>.
 +
 +
Assume points <math>S</math>, <math>T</math>, and <math>U</math> are on faces <math>AB</math>, <math>AC</math>, and <math>BC</math> respectively such that <math>ES \perp AB</math>, <math>ET \perp AC</math>, and <math>EU \perp BC</math>.
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=23|num-a=25}}
 
{{AMC12 box|year=2002|ab=P|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:45, 10 March 2024

Problem

Let $ABCD$ be a regular tetrahedron and Let $E$ be a point inside the face $ABC.$ Denote by $s$ the sum of the distances from $E$ to the faces $DAB, DBC, DCA,$ and by $S$ the sum of the distances from $E$ to the edges $AB, BC, CA.$ Then $\frac{s}{S}$ equals

$\text{(A) }\sqrt{2} \qquad \text{(B) }\frac{2 \sqrt{2}}{3} \qquad \text{(C) }\frac{\sqrt{6}}{2} \qquad \text{(D) }2 \qquad \text{(E) }3$

Solution

Assume points $P$, $Q$, and $R$ are on faces $ABD$, $ACD$, and $BCD$ respectively such that $EP \perp ABD$, $EQ \perp ACD$, and $ER \perp BCD$.

Assume points $S$, $T$, and $U$ are on faces $AB$, $AC$, and $BC$ respectively such that $ES \perp AB$, $ET \perp AC$, and $EU \perp BC$.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png