Difference between revisions of "User:Quantum-phantom"

(Created page with "<asy> usepackage("tkz-euclide"); label("\begin{tikzpicture}[scale=2.5] \tkzDefPoint(0:1){C}\tkzDefPoint(180:1){B}\tkzDefPoint(0:0){O} \tkzDefPoint(47:1){E}\tkzDefPoint(123:1){...")
 
Line 1: Line 1:
<asy>
+
This message is regarding [url=https://artofproblemsolving.com/community/c594864h3265596p30137934]this post[/url].
usepackage("tkz-euclide");
+
[quote="fura3334"][b]Problem 10[/b]
label("\begin{tikzpicture}[scale=2.5]
+
(unclear source)
\tkzDefPoint(0:1){C}\tkzDefPoint(180:1){B}\tkzDefPoint(0:0){O}
+
For a positive integer <math>n</math>, denote by <math>f(n)</math> the number of ways to represent <math>n</math> as the sum of powers of 2. Different orders [color=#960000]are[/color] considered different representations, e.g. <math>4+1+1</math> and <math>1+4+1</math> are two different representations of <math>6</math>. Call <math>n</math> "good" if <math>f(n)</math> is even. Let <math>A</math> be the largest number of consecutive good numbers in <math>\{1,2,\cdots,2025\}</math>. Find the remainder when <math>A</math> is divided by 1000.[/quote]
\tkzDefPoint(47:1){E}\tkzDefPoint(123:1){F}
+
 
\tkzInterLL(B,F)(C,E)\tkzGetPoint{A}
+
I just read [color=#960000]are[/color] as [color=#960000]aren't[/color]. (yesterday)
\tkzDefPoint(270:1){M}\tkzInterLL(B,C)(M,E)\tkzGetPoint{X}
+
 
\tkzInterLL(B,C)(M,F)\tkzGetPoint{Y}
+
Let \(n=a_1+a_2+\cdots\) where all \(a_i\) are powers of \(2\). If \(a_1=1\), then \(a_2+a_3+\dots=n-1\), with \(f(n-1)\) choices; If \(a_1=2\), then \(a_2+a_3+\dots=n-2\), with \(f(n-2)\) choices... So \(f(n)=\sum\limits_{i=0}^{\left\lfloor\log_2n\right\rfloor}f\left(n-2^i\right)\).
\tkzInterLL(B,E)(C,F)\tkzGetPoint{H}
+
 
\tkzInterLL(A,H)(C,B)\tkzGetPoint{D}
+
We use induction on \(n\) to show that <math>f(n)</math> is odd iff <math>n</math> is in the form of \(2^t-1\), where \(t\) is a natural number.
\tkzInterLC(H,A)(O,B)\tkzGetPoints{z}{Z}
 
\tkzDrawArc(O,C)(B)\tkzDrawPoints(A,...,F,H,X,Y,Z)
 
\tkzDrawSegments(A,B B,C C,A A,D B,E E,X F,Y C,F)
 
\tkzDrawSegments[dashed](Z,Y X,Z Z,B Z,C)
 
\tkzDefLine[tangent at=Z](O)\tkzGetPoint{tan}
 
\tkzDrawLine[add=.4 and -.6](Z,tan)
 
\tkzDefTriangleCenter[circum](X,Y,Z)
 
\tkzGetPoint{T}\tkzDrawCircle(T,X)
 
\tkzLabelPoints[below](X,Y)\tkzLabelPoints[above right](Z,D,E)
 
\tkzLabelPoints[below left](H,B)\tkzLabelPoints[below right](C)
 
\tkzLabelPoints[above left](A,F)
 
\end{tikzpicture}",origin);
 
</asy>
 

Revision as of 07:34, 14 March 2024

This message is regarding [url=https://artofproblemsolving.com/community/c594864h3265596p30137934]this post[/url]. [quote="fura3334"][b]Problem 10[/b] (unclear source) For a positive integer $n$, denote by $f(n)$ the number of ways to represent $n$ as the sum of powers of 2. Different orders [color=#960000]are[/color] considered different representations, e.g. $4+1+1$ and $1+4+1$ are two different representations of $6$. Call $n$ "good" if $f(n)$ is even. Let $A$ be the largest number of consecutive good numbers in $\{1,2,\cdots,2025\}$. Find the remainder when $A$ is divided by 1000.[/quote]

I just read [color=#960000]are[/color] as [color=#960000]aren't[/color]. (yesterday)

Let n=a1+a2+ where all ai are powers of 2. If a1=1, then a2+a3+=n1, with f(n1) choices; If a1=2, then a2+a3+=n2, with f(n2) choices... So f(n)=i=0log2nf(n2i).

We use induction on n to show that $f(n)$ is odd iff $n$ is in the form of 2t1, where t is a natural number.