Difference between revisions of "2024 USAJMO Problems/Problem 1"

m (Solution 1)
Line 4: Line 4:
 
Let <math>ABCD</math> be a cyclic quadrilateral with <math>AB=7</math> and <math>CD=8</math>. Points <math>P</math> and <math>Q</math> are selected on line segment <math>AB</math> so that <math>AP=BQ=3</math>. Points <math>R</math> and <math>S</math> are selected on line segment <math>CD</math> so that <math>CR=DS=2</math>. Prove that <math>PQRS</math> is a quadrilateral.
 
Let <math>ABCD</math> be a cyclic quadrilateral with <math>AB=7</math> and <math>CD=8</math>. Points <math>P</math> and <math>Q</math> are selected on line segment <math>AB</math> so that <math>AP=BQ=3</math>. Points <math>R</math> and <math>S</math> are selected on line segment <math>CD</math> so that <math>CR=DS=2</math>. Prove that <math>PQRS</math> is a quadrilateral.
  
== Solution 1 ==
+
== Solution 1 (One-liner) ==
 +
<math>OP=OQ=\sqrt{R^2-3.5^2+0.5^2}=\sqrt{R^2-12}=\sqrt{R^2-4^2+2^2}=OR=OS</math>
  
 
==See Also==
 
==See Also==
 
{{USAJMO newbox|year=2024|before=First Question|num-a=2}}
 
{{USAJMO newbox|year=2024|before=First Question|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:52, 19 March 2024

Problem

Let $ABCD$ be a cyclic quadrilateral with $AB=7$ and $CD=8$. Points $P$ and $Q$ are selected on line segment $AB$ so that $AP=BQ=3$. Points $R$ and $S$ are selected on line segment $CD$ so that $CR=DS=2$. Prove that $PQRS$ is a quadrilateral.

Solution 1 (One-liner)

$OP=OQ=\sqrt{R^2-3.5^2+0.5^2}=\sqrt{R^2-12}=\sqrt{R^2-4^2+2^2}=OR=OS$

See Also

2024 USAJMO (ProblemsResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6
All USAJMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png