Difference between revisions of "User:Quantum-phantom"
Line 1: | Line 1: | ||
− | + | By the law of cosines, | |
− | + | <cmath>\cos\angle DAC=\frac{221-CD^2}{220}=\cos\angle DBC=\frac{169-CD^2}{120},</cmath> | |
− | + | so <math>CD=\sqrt{\tfrac{533}{5}}</math>. Similarly, <math>AB=\tfrac{2 \sqrt{5} \sqrt{533}}{13}</math>. Let <math>AD\cap BC=I</math>, <math>AB\cap CD=J</math>, <math>OE\cap IJ=F</math>, then <math>OF\perp IJ</math> by Brocard's theorem. Since <math>ON\perp DC</math>, <math>OM\perp AB</math>, then | |
− | + | \begin{align*} | |
− | + | \frac{MP}{NP}&=\frac{MO\sin\angle MOE}{NO\sin\angle NOE}=\frac{\sin\angle MOE}{\sin\angle NOE}=\frac{\sin\angle IJA}{\sin(\pi-\angle DJI)}=\frac{\sin\angle IJA}{\sin\angle DJI}\\ | |
− | + | &=\frac{JA\cdot JI\sin\angle IJA}{IJ\cdot DJ\sin\angle DJI}\cdot\frac{DJ}{JA}=\frac{[IJA]}{[DJI]}\cdot\frac{DJ}{JA}=\frac{IA}{ID}\cdot\frac{DJ}{JA}. | |
− | + | \end{align*} | |
− | + | By the law of sines, | |
− | + | <cmath>\frac{IA}{ID}=\frac{IA}{IC}\cdot\frac{IC}{ID}=\frac{AB}{CD}\cdot\frac{AC}{BD}=\frac{55}{78},~\frac{DJ}{JA}=\frac{BD}{AC}=\frac{12}{11}.</cmath> | |
− | + | So the answer is \(\tfrac{MP}{NP}=\frac{12}{11}\cdot\frac{55}{78}=\frac{10}{13}\). | |
+ | [img]https://img.picgo.net/2024/04/07/IMG_3135a148c4fcc55ace27.jpeg[/img] |
Latest revision as of 05:11, 15 April 2024
By the law of cosines, so . Similarly, . Let , , , then by Brocard's theorem. Since , , then \begin{align*} \frac{MP}{NP}&=\frac{MO\sin\angle MOE}{NO\sin\angle NOE}=\frac{\sin\angle MOE}{\sin\angle NOE}=\frac{\sin\angle IJA}{\sin(\pi-\angle DJI)}=\frac{\sin\angle IJA}{\sin\angle DJI}\\ &=\frac{JA\cdot JI\sin\angle IJA}{IJ\cdot DJ\sin\angle DJI}\cdot\frac{DJ}{JA}=\frac{[IJA]}{[DJI]}\cdot\frac{DJ}{JA}=\frac{IA}{ID}\cdot\frac{DJ}{JA}. \end{align*} By the law of sines, So the answer is \(\tfrac{MP}{NP}=\frac{12}{11}\cdot\frac{55}{78}=\frac{10}{13}\). [img]https://img.picgo.net/2024/04/07/IMG_3135a148c4fcc55ace27.jpeg[/img]