Difference between revisions of "2000 IMO Problems"

(Problem 1)
(Problem 1)
Line 1: Line 1:
 +
== DAY 1 ==
 +
 
== Problem 1 ==
 
== Problem 1 ==
 
Two circles <math>G_1</math> and <math>G_2</math> intersect at two points <math>M</math> and <math>N</math>. Let <math>AB</math> be the line tangent to these circles at <math>A</math> and <math>B</math>, respectively, so that <math>M</math> lies closer to <math>AB</math> than <math>N</math>. Let <math>CD</math> be the line parallel to <math>AB</math> and passing through the point <math>M</math>, with <math>C</math> on <math>G_1</math> and <math>D</math> on <math>G_2</math>. Lines <math>AC</math> and <math>BD</math> meet at <math>E</math>; lines <math>AN</math> and <math>CD</math> meet at <math>P</math>; lines <math>BN</math> and <math>CD</math> meet at <math>Q</math>. Show that <math>EP=EQ</math>.
 
Two circles <math>G_1</math> and <math>G_2</math> intersect at two points <math>M</math> and <math>N</math>. Let <math>AB</math> be the line tangent to these circles at <math>A</math> and <math>B</math>, respectively, so that <math>M</math> lies closer to <math>AB</math> than <math>N</math>. Let <math>CD</math> be the line parallel to <math>AB</math> and passing through the point <math>M</math>, with <math>C</math> on <math>G_1</math> and <math>D</math> on <math>G_2</math>. Lines <math>AC</math> and <math>BD</math> meet at <math>E</math>; lines <math>AN</math> and <math>CD</math> meet at <math>P</math>; lines <math>BN</math> and <math>CD</math> meet at <math>Q</math>. Show that <math>EP=EQ</math>.
  
[[2000 IMO Problems/Problem 1 | Solution]]
+
[[2000 IMO Problems/Problem 1 | Solution]]
 +
 
 +
 
 +
== Problem 2 ==
 +
 
 +
Let <math>a, b, c</math> be positive real numbers with <math>abc=1</math>. Show that
 +
 
 +
<cmath>\left( a-1+\frac{1}{b} \right)\left( b-1+\frac{1}{c} \right)\left( c-1+\frac{1}{a} \right) \le 1</cmath>
 +
 
 +
[[2000 IMO Problems/Problem 2 | Solution]]
 +
 
 +
== Problem 3 ==
 +
 
 +
Let <math>n \ge 2</math> be a positive integer and <math>\lambda</math> a positive real number. Initially there are <math>n</math> fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points <math>A</math> and <math>B</math> to the left of <math>B</math>, and letting the flea from <math>A</math> jump over the flea from <math>B</math> to the point <math>C</math> so that <math>\frac{BC}{AB}=\lambda</math>.
 +
 
 +
Determine all values of <math>\lambda</math> such that, for any point <math>M</math> on the line and for any initial position of the <math>n</math> fleas, there exists a sequence of moves that will take them all to the position right of <math>M</math>.
 +
 
 +
[[IMO Problems/Problem 3 | Solution]]

Revision as of 11:41, 19 April 2024

DAY 1

Problem 1

Two circles $G_1$ and $G_2$ intersect at two points $M$ and $N$. Let $AB$ be the line tangent to these circles at $A$ and $B$, respectively, so that $M$ lies closer to $AB$ than $N$. Let $CD$ be the line parallel to $AB$ and passing through the point $M$, with $C$ on $G_1$ and $D$ on $G_2$. Lines $AC$ and $BD$ meet at $E$; lines $AN$ and $CD$ meet at $P$; lines $BN$ and $CD$ meet at $Q$. Show that $EP=EQ$.

Solution


Problem 2

Let $a, b, c$ be positive real numbers with $abc=1$. Show that

\[\left( a-1+\frac{1}{b} \right)\left( b-1+\frac{1}{c} \right)\left( c-1+\frac{1}{a} \right) \le 1\]

Solution

Problem 3

Let $n \ge 2$ be a positive integer and $\lambda$ a positive real number. Initially there are $n$ fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points $A$ and $B$ to the left of $B$, and letting the flea from $A$ jump over the flea from $B$ to the point $C$ so that $\frac{BC}{AB}=\lambda$.

Determine all values of $\lambda$ such that, for any point $M$ on the line and for any initial position of the $n$ fleas, there exists a sequence of moves that will take them all to the position right of $M$.

Solution