Difference between revisions of "2000 IMO Problems"
(→Problem 1) |
(→Problem 1) |
||
Line 1: | Line 1: | ||
+ | == DAY 1 == | ||
+ | |||
== Problem 1 == | == Problem 1 == | ||
Two circles <math>G_1</math> and <math>G_2</math> intersect at two points <math>M</math> and <math>N</math>. Let <math>AB</math> be the line tangent to these circles at <math>A</math> and <math>B</math>, respectively, so that <math>M</math> lies closer to <math>AB</math> than <math>N</math>. Let <math>CD</math> be the line parallel to <math>AB</math> and passing through the point <math>M</math>, with <math>C</math> on <math>G_1</math> and <math>D</math> on <math>G_2</math>. Lines <math>AC</math> and <math>BD</math> meet at <math>E</math>; lines <math>AN</math> and <math>CD</math> meet at <math>P</math>; lines <math>BN</math> and <math>CD</math> meet at <math>Q</math>. Show that <math>EP=EQ</math>. | Two circles <math>G_1</math> and <math>G_2</math> intersect at two points <math>M</math> and <math>N</math>. Let <math>AB</math> be the line tangent to these circles at <math>A</math> and <math>B</math>, respectively, so that <math>M</math> lies closer to <math>AB</math> than <math>N</math>. Let <math>CD</math> be the line parallel to <math>AB</math> and passing through the point <math>M</math>, with <math>C</math> on <math>G_1</math> and <math>D</math> on <math>G_2</math>. Lines <math>AC</math> and <math>BD</math> meet at <math>E</math>; lines <math>AN</math> and <math>CD</math> meet at <math>P</math>; lines <math>BN</math> and <math>CD</math> meet at <math>Q</math>. Show that <math>EP=EQ</math>. | ||
− | [[2000 IMO Problems/Problem 1 | Solution]] | + | [[2000 IMO Problems/Problem 1 | Solution]] |
+ | |||
+ | |||
+ | == Problem 2 == | ||
+ | |||
+ | Let <math>a, b, c</math> be positive real numbers with <math>abc=1</math>. Show that | ||
+ | |||
+ | <cmath>\left( a-1+\frac{1}{b} \right)\left( b-1+\frac{1}{c} \right)\left( c-1+\frac{1}{a} \right) \le 1</cmath> | ||
+ | |||
+ | [[2000 IMO Problems/Problem 2 | Solution]] | ||
+ | |||
+ | == Problem 3 == | ||
+ | |||
+ | Let <math>n \ge 2</math> be a positive integer and <math>\lambda</math> a positive real number. Initially there are <math>n</math> fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points <math>A</math> and <math>B</math> to the left of <math>B</math>, and letting the flea from <math>A</math> jump over the flea from <math>B</math> to the point <math>C</math> so that <math>\frac{BC}{AB}=\lambda</math>. | ||
+ | |||
+ | Determine all values of <math>\lambda</math> such that, for any point <math>M</math> on the line and for any initial position of the <math>n</math> fleas, there exists a sequence of moves that will take them all to the position right of <math>M</math>. | ||
+ | |||
+ | [[IMO Problems/Problem 3 | Solution]] |
Revision as of 11:41, 19 April 2024
Contents
DAY 1
Problem 1
Two circles and intersect at two points and . Let be the line tangent to these circles at and , respectively, so that lies closer to than . Let be the line parallel to and passing through the point , with on and on . Lines and meet at ; lines and meet at ; lines and meet at . Show that .
Problem 2
Let be positive real numbers with . Show that
Problem 3
Let be a positive integer and a positive real number. Initially there are fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points and to the left of , and letting the flea from jump over the flea from to the point so that .
Determine all values of such that, for any point on the line and for any initial position of the fleas, there exists a sequence of moves that will take them all to the position right of .