Difference between revisions of "2025 AMC 8 Problems/Problem 1"

(Undo revision 215692 by Theumbrellaacademy (talk))
(Tag: Undo)
(Undo revision 215691 by Theumbrellaacademy (talk))
(Tag: Undo)
Line 1: Line 1:
 
Let m and n be 2 integers such that m > n. Suppose m + n = 20, m² + n² = 328, find m² - n².
 
Let m and n be 2 integers such that m > n. Suppose m + n = 20, m² + n² = 328, find m² - n².
 +
 +
A) 280
 +
B) 292
 +
C) 300
 +
D) 320
 +
E) 340
  
 
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math>
 
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math>

Revision as of 07:08, 24 April 2024

Let m and n be 2 integers such that m > n. Suppose m + n = 20, m² + n² = 328, find m² - n².

A) 280 B) 292 C) 300 D) 320 E) 340

$\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340$