Difference between revisions of "2015 IMO Problems/Problem 3"
m (→The Actual Problem) |
m (→Solution) |
||
Line 2: | Line 2: | ||
Prove that the circumcircles of triangles <math>KQH</math> and <math>FKM</math> are tangent to each other. | Prove that the circumcircles of triangles <math>KQH</math> and <math>FKM</math> are tangent to each other. | ||
+ | |||
+ | == The Actual Problem == | ||
+ | |||
+ | Let <math>ABC</math> be an acute triangle with <math>AB > AC</math>. Let <math>\gamma</math> be its circumcircle, <math>H</math> its orthocenter, and <math>F</math> the foot of the altitude from <math>A</math>. Let <math>M</math> be the midpoint of <math>BC</math>. Let <math>Q</math> be the point on <math>\gamma</math> such that <math>\angle HQA = 90◦</math> and let <math>K</math> be the point on <math>\gamma</math> such that <math>\angle HKQ = 90◦</math> . Assume that the points <math>A</math>, <math>B</math>, <math>C</math>, <math>K</math> and <math>Q</math> are all different and lie on <math>\gamma</math> in this order. Prove that the circumcircles of triangles <math>KQH</math> and <math>FKM</math> are tangent to each other. | ||
==Solution== | ==Solution== |
Revision as of 12:58, 1 June 2024
Let be an acute triangle with . Let be its circumcircle, its orthocenter, and the foot of the altitude from . Let be the midpoint of . Let be the point on such that . Assume that the points , , , , and are all different, and lie on in this order.
Prove that the circumcircles of triangles and are tangent to each other.
The Actual Problem
Let be an acute triangle with . Let be its circumcircle, its orthocenter, and the foot of the altitude from . Let be the midpoint of . Let be the point on such that and let be the point on such that . Assume that the points , , , and are all different and lie on in this order. Prove that the circumcircles of triangles and are tangent to each other.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
2015 IMO (Problems) • Resources | ||
Preceded by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 4 |
All IMO Problems and Solutions |