Difference between revisions of "1965 AHSME Problems/Problem 4"

(Created page with "== Problem == Line <math>\ell_2</math> intersects line <math>\ell_1</math> and line <math>\ell_3</math> is parallel to <math>\ell_1</math>. The three lines are distinct and l...")
 
(Problem)
Line 8: Line 8:
 
\textbf{(C) }\ 2 \qquad  
 
\textbf{(C) }\ 2 \qquad  
 
\textbf{(D) }\ 4 \qquad  
 
\textbf{(D) }\ 4 \qquad  
\textbf{(E) }\ 8  </math>  
+
\textbf{(E) }\ 8  </math>
 
 
[[1965 AHSME Problems/Problem 4|Solution]]
 

Revision as of 16:43, 26 June 2024

Problem

Line $\ell_2$ intersects line $\ell_1$ and line $\ell_3$ is parallel to $\ell_1$. The three lines are distinct and lie in a plane. The number of points equidistant from all three lines is:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 1 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ 4 \qquad  \textbf{(E) }\ 8$