Difference between revisions of "1970 AMC 12 Problems/Problem 2"

(Problem)
Line 3: Line 3:
 
A square and a circle have equal perimeters. The ratio of the area of the circle to the area of the square is
 
A square and a circle have equal perimeters. The ratio of the area of the circle to the area of the square is
  
<math> \mathrm{(A) \ } -h\qquad \mathrm{(B) \ } 0\qquad \mathrm{(C) \ } h\qquad \mathrm{(D) \ } 2h</math>
+
<math> \mathrm{(A) \ } pi/4\qquad \mathrm{(B) \ } 0\qquad \mathrm{(C) \ } h\qquad \mathrm{(D) \ } 2h</math>
  
 
<math>\mathrm{(E) \ }  h^3</math>
 
<math>\mathrm{(E) \ }  h^3</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 11:30, 9 January 2008

Problem

A square and a circle have equal perimeters. The ratio of the area of the circle to the area of the square is

$\mathrm{(A) \ } pi/4\qquad \mathrm{(B) \ } 0\qquad \mathrm{(C) \ } h\qquad \mathrm{(D) \ } 2h$

$\mathrm{(E) \ }  h^3$

Solution