Difference between revisions of "2013 AMC 8 Problems/Problem 24"

(Solution 4)
(=Video Solution for Problems 21-25)
Line 38: Line 38:
 
dot("$J$", J, SE);
 
dot("$J$", J, SE);
 
</asy>
 
</asy>
 
==Video Solution for Problems 21-25=
 
https://youtu.be/-mi3qziCuec
 
 
==Video Solution==
 
https://youtu.be/sbBjMvq5GG4 ~savannahsolver
 
 
Easy Solution1-<br>
 
let side of 1 square be= 2 (doesn't matter if we are calculating ratios)<br>
 
Then, total area= 3x2^2=12<br>
 
Shaded area=Total area - Unshaded area<br>
 
Unshaded area = [AJFEDA]<br>
 
We can now extend AD to the centre point of FG. This can be called y.<br>
 
△AJY[{(2+2) x 2+(2/2)}/2]=6 + [DEFY]=2x1=2<br>
 
Unshaded area=6+2=8<br>
 
Shaded area = 12-8=4 <br>
 
Hence, ratio= 4/12 = 1/3<br>
 
~aarnavSOni
 
 
==Easiest Solution==
 
 
We can see that the Pentagon is made of two congruent shapes. We can fit one triangle into the gap in the upper square. Therefore, the answer is just <math>\frac{1}{3}\implies\boxed{C}</math>
 
 
==Solution 1==
 
<asy>
 
pair A,B,C,D,E,F,G,H,I,J,X;
 
A = (0.5,2);
 
B = (1.5,2);
 
C = (1.5,1);
 
D = (0.5,1);
 
E = (0,1);
 
F = (0,0);
 
G = (1,0);
 
H = (1,1);
 
I = (2,1);
 
J = (2,0);
 
X= extension(I,J,A,B);
 
dot(X,red);
 
draw(I--X--B,red);
 
draw(A--B);
 
draw(C--B);
 
draw(D--A);
 
draw(F--E);
 
draw(I--J);
 
draw(J--F);
 
draw(G--H);
 
draw(A--J);
 
filldraw(A--B--C--I--J--cycle,grey);
 
draw(E--I);
 
dot("$A$", A, NW);
 
dot("$B$", B, NE);
 
dot("$C$", C, NE);
 
dot("$D$", D, NW);
 
dot("$E$", E, NW);
 
dot("$F$", F, SW);
 
dot("$G$", G, S);
 
dot("$H$", H, N);
 
dot("$I$", I, NE);
 
label("$X$", X,SE);
 
dot("$J$", J, SE);</asy>
 
 
 
First let <math>s=2</math> (where <math>s</math> is the side length of the squares) for simplicity. We can extend <math>\overline{IJ}</math> until it hits the extension of <math>\overline{AB}</math>. Call this point <math>X</math>. The area of triangle <math>AXJ</math> then is <math>\dfrac{3 \cdot 4}{2}</math> The area of rectangle <math>BXIC</math> is <math>2 \cdot 1 = 2</math>. Thus, our desired area is <math>6-2 = 4</math>. Now, the ratio of the shaded area to the combined area of the three squares is <math>\frac{4}{3\cdot 2^2} = \boxed{\textbf{(C)}\hspace{.05in}\frac{1}{3}}</math>.
 
 
==Solution 2==
 
 
<asy>
 
pair A,B,C,D,E,F,G,H,I,J,X;
 
A = (0.5,2);
 
B = (1.5,2);
 
C = (1.5,1);
 
D = (0.5,1);
 
E = (0,1);
 
F = (0,0);
 
G = (1,0);
 
H = (1,1);
 
I = (2,1);
 
J = (2,0);
 
X= (1.25,1);
 
draw(A--B);
 
draw(C--B);
 
draw(D--A);
 
draw(F--E);
 
draw(I--J);
 
draw(J--F);
 
draw(G--H);
 
draw(A--J);
 
filldraw(A--B--C--I--J--cycle,grey);
 
draw(E--I);
 
dot(X,red);
 
label("$A$", A, NW);
 
label("$B$", B, NE);
 
label("$C$", C, NE);
 
label("$D$", D, NW);
 
label("$E$", E, NW);
 
label("$F$", F, SW);
 
label("$G$", G, S);
 
label("$H$", H, N);
 
label("$I$", I, NE);
 
label("$X$", X,SW,red);
 
label("$J$", J, SE);</asy>
 
 
Let the side length of each square be <math>1</math>.
 
 
Let the intersection of <math>AJ</math> and <math>EI</math> be <math>X</math>.
 
 
Since <math>[ABCD]=[GHIJ]</math>, <math>AD=IJ</math>. Since <math>\angle IXJ</math> and <math>\angle AXD</math> are vertical angles, they are congruent. We also have <math>\angle JIH\cong\angle ADC</math> by definition.
 
 
So we have <math>\triangle ADX\cong\triangle JIX</math> by <math>\textit{AAS}</math> congruence. Therefore, <math>DX=JX</math>.
 
 
Since <math>C</math> and <math>D</math> are midpoints of sides, <math>DH=CJ=\dfrac{1}{2}</math>. This combined with <math>DX=JX</math> yields <math>HX=CX=\dfrac{1}{2}\times \dfrac{1}{2}=\dfrac{1}{4}</math>.
 
 
The area of trapezoid <math>ABCX</math> is <math>\dfrac{1}{2}(AB+CX)(BC)=\dfrac{1}{2}\times \dfrac{5}{4}\times 1=\dfrac{5}{8}</math>.
 
 
The area of triangle <math>JIX</math> is <math>\dfrac{1}{2}\times XJ\times IJ=\dfrac{1}{2}\times \dfrac{3}{4}\times 1=\dfrac{3}{8}</math>.
 
 
So the area of the pentagon <math>AJICB</math> is <math>\dfrac{3}{8}+\dfrac{5}{8}=1</math>.
 
 
The area of the <math>3</math> squares is <math>1\times 3=3</math>.
 
 
Therefore, <math>\dfrac{[AJICB]}{[ABCIJFED]}= \boxed{\textbf{(C)}\hspace{.05in}\frac{1}{3}}</math>.
 
 
==Solution 3==
 
 
<asy>
 
pair A,B,C,D,E,F,G,H,I,J,K;
 
A = (0.5,2);
 
B = (1.5,2);
 
C = (1.5,1);
 
D = (0.5,1);
 
E = (0,1);
 
F = (0,0);
 
G = (1,0);
 
H = (1,1);
 
I = (2,1);
 
J = (2,0);
 
K= (1.25,1);
 
draw(A--B);
 
draw(C--B);
 
draw(D--A);
 
draw(F--E);
 
draw(I--J);
 
draw(J--F);
 
draw(G--H);
 
draw(A--J);
 
filldraw(A--B--C--I--J--cycle,grey);
 
draw(E--I);
 
dot(K,red);
 
label("$A$", A, NW);
 
label("$B$", B, NE);
 
label("$C$", C, NE);
 
label("$D$", D, NW);
 
label("$E$", E, NW);
 
label("$F$", F, SW);
 
label("$G$", G, S);
 
label("$H$", H, N);
 
label("$I$", I, NE);
 
label("$K$", K,SW,red);
 
label("$J$", J, SE);</asy>
 
 
Let the intersection of <math>AJ</math> and <math>EI</math> be <math>K</math>.
 
 
Now we have <math>\triangle ADK</math> and <math>\triangle KIJ</math>.
 
 
Because both triangles has a side on congruent squares therefore <math>AD \cong IJ</math>.
 
 
Because <math>\angle AKD</math> and <math>\angle JKI</math> are vertical angles <math>\angle AKD \cong \angle JKI</math>.
 
 
Also both <math>\angle ADK</math> and <math>\angle JIK</math> are right angles so <math>\angle ADK \cong \angle JIK</math>.
 
 
Therefore by AAS(Angle, Angle, Side) <math>\triangle ADK \cong \triangle KIJ</math>.
 
 
Then translating/rotating the shaded <math>\triangle JIK</math> into the position of <math>\triangle ADK</math>
 
 
So the shaded area now completely covers the square <math>ABCD</math>
 
 
Set the area of a square as <math>x</math>
 
 
Therefore, <math>\frac{x}{3x}= \boxed{\textbf{(C)}\hspace{.05in}\frac{1}{3}}</math>.
 
 
==Video Solution by OmegaLearn==
 
https://youtu.be/j3QSD5eDpzU?t=346
 
 
 
==See Also==
 
{{AMC8 box|year=2013|num-b=23|num-a=25}}
 
{{MAA Notice}}
 

Revision as of 08:59, 16 July 2024

Problem

Squares $ABCD$, $EFGH$, and $GHIJ$ are equal in area. Points $C$ and $D$ are the midpoints of sides $IH$ and $HE$, respectively. What is the ratio of the area of the shaded pentagon $AJICB$ to the sum of the areas of the three squares?

$\textbf{(A)}\hspace{.05in}\frac{1}{4}\qquad\textbf{(B)}\hspace{.05in}\frac{7}{24}\qquad\textbf{(C)}\hspace{.05in}\frac{1}{3}\qquad\textbf{(D)}\hspace{.05in}\frac{3}{8}\qquad\textbf{(E)}\hspace{.05in}\frac{5}{12}$

[asy] pair A,B,C,D,E,F,G,H,I,J;  A = (0.5,2); B = (1.5,2); C = (1.5,1); D = (0.5,1); E = (0,1); F = (0,0); G = (1,0); H = (1,1); I = (2,1); J = (2,0);  draw(A--B);  draw(C--B);  draw(D--A);   draw(F--E);  draw(I--J);  draw(J--F);  draw(G--H);  draw(A--J);  filldraw(A--B--C--I--J--cycle,grey); draw(E--I); dot("$A$", A, NW); dot("$B$", B, NE); dot("$C$", C, NE); dot("$D$", D, NW); dot("$E$", E, NW); dot("$F$", F, SW); dot("$G$", G, S); dot("$H$", H, N); dot("$I$", I, NE); dot("$J$", J, SE); [/asy]