Difference between revisions of "1959 AHSME Problems/Problem 7"

(Solution)
(Add problem statement)
Line 1: Line 1:
==Solution==
+
== Problem ==
 +
The sides of a right triangle are <math>a</math>, <math>a+d</math>, and <math>a+2d</math>, with <math>a</math> and <math>d</math> both positive. The ratio of <math>a</math> to <math>d</math> is:
 +
<math>\textbf{(A)}\ 1:3 \qquad\textbf{(B)}\ 1:4 \qquad\textbf{(C)}\ 2:1\qquad\textbf{(D)}\ 3:1\qquad\textbf{(E)}\ 3:4  </math> 
 +
 
 +
== Solution ==
 +
 
 
If we let <math>a=3</math> and <math>d=1</math>, then we will get a <math>3</math>-<math>4</math>-<math>5</math> triangle, which is a right triangle. So, the answer is <math>\boxed{\textbf{(D)} \ 3:1}</math>.
 
If we let <math>a=3</math> and <math>d=1</math>, then we will get a <math>3</math>-<math>4</math>-<math>5</math> triangle, which is a right triangle. So, the answer is <math>\boxed{\textbf{(D)} \ 3:1}</math>.

Revision as of 12:56, 16 July 2024

Problem

The sides of a right triangle are $a$, $a+d$, and $a+2d$, with $a$ and $d$ both positive. The ratio of $a$ to $d$ is: $\textbf{(A)}\ 1:3 \qquad\textbf{(B)}\ 1:4 \qquad\textbf{(C)}\ 2:1\qquad\textbf{(D)}\ 3:1\qquad\textbf{(E)}\ 3:4$

Solution

If we let $a=3$ and $d=1$, then we will get a $3$-$4$-$5$ triangle, which is a right triangle. So, the answer is $\boxed{\textbf{(D)} \ 3:1}$.