Difference between revisions of "2013 Mock AIME I Problems/Problem 14"

m
m (solution edits, links)
Line 4: Line 4:
 
==Solution==
 
==Solution==
  
Since <math>997</math> is prime, we have <math>a_1^{997}+a_2^{997}+\cdots + a_{2013}^{997}</math> equals to <math>a_1+a_2+\cdots + a_{2013}</math> mod <math>997</math>, which by Vieta's equals <math>-4</math>. Thus our answer is <math>993\pmod{997}</math>.
+
Since <math>997</math> is prime, by [[Fermat's Little Theorem]], we have <math>a_1^{997}+a_2^{997}+\cdots + a_{2013}^{997} \equiv a_1+a_2+\cdots + a_{2013} \pmod{997}</math>, which, by [[Vieta's Formulas]], equals <math>-4 \equiv 993 \pmod{997}</math>. Thus our answer is <math>\boxed{993}</math>.
  
 
==See also==
 
==See also==

Revision as of 12:34, 1 August 2024

Problem

Let $P(x) = x^{2013}+4x^{2012}+9x^{2011}+16x^{2010}+\cdots + 4052169x + 4056196 = \sum_{j=1}^{2014}j^2x^{2014-j}.$ If $a_1, a_2, \cdots a_{2013}$ are its roots, then compute the remainder when $a_1^{997}+a_2^{997}+\cdots + a_{2013}^{997}$ is divided by 997.

Solution

Since $997$ is prime, by Fermat's Little Theorem, we have $a_1^{997}+a_2^{997}+\cdots + a_{2013}^{997} \equiv a_1+a_2+\cdots + a_{2013} \pmod{997}$, which, by Vieta's Formulas, equals $-4 \equiv 993 \pmod{997}$. Thus our answer is $\boxed{993}$.

See also