Difference between revisions of "Factorial"
(problems) |
(→Problems: bad template) |
||
Line 33: | Line 33: | ||
==Problems== | ==Problems== | ||
===Introductory=== | ===Introductory=== | ||
− | *{ | + | *Find the units digit of the sum |
+ | |||
+ | <cmath>\sum_{i=1}^{100}(i!)^{2}</cmath> | ||
+ | |||
+ | <math>\mathrm{(A)}\,0\quad\mathrm{(B)}\,1\quad\mathrm{(C)}\,3\quad\mathrm{(D)}\,5\quad\mathrm{(E)}\,7\quad\mathrm{(F)}\,9</math> | ||
([[2007 iTest Problems/Problem 6|Source]]) | ([[2007 iTest Problems/Problem 6|Source]]) | ||
===Intermediate=== | ===Intermediate=== | ||
Line 41: | Line 45: | ||
*Let <math>p_n (k) </math> be the number of permutations of the set <math>\{ 1, \ldots , n \} , \; n \ge 1 </math>, which have exactly <math>k </math> fixed points. Prove that <center><math>\sum_{k=0}^{n} k \cdot p_n (k) = n!</math>.</center> | *Let <math>p_n (k) </math> be the number of permutations of the set <math>\{ 1, \ldots , n \} , \; n \ge 1 </math>, which have exactly <math>k </math> fixed points. Prove that <center><math>\sum_{k=0}^{n} k \cdot p_n (k) = n!</math>.</center> | ||
([[1987 IMO Problems/Problem 1|Source]]) | ([[1987 IMO Problems/Problem 1|Source]]) | ||
− | |||
− | |||
=== See Also == | === See Also == |
Revision as of 22:01, 14 January 2008
The factorial is an important function in combinatorics and analysis, used to determine the number of ways to arrange objects.
Contents
[hide]Definition
The factorial is defined for positive integers as . Alternatively, a recursive definition for the factorial is
.
Additional Information
By convention, is given the value
.
The gamma function is a generalization of the factorial to values other than nonnegative integers.
Prime Factorization
- Main article: Prime factorization
Documentation
Use {{hatnote|text}} </noinclude>
Since is the product of all positive integers not exceeding
, it is clear that it is divisible by all
primes
, and not divisible by any prime
. But what is the power of a prime
in the prime factorization of
? We can find it as the sum of powers of
in all the factors
;
but rather than counting the power of
in each factor, we shall count the number of factors divisible by a given power of
. Among the numbers
, exactly
are divisible by
(here
is the floor function). The ones divisible by
give one power of
. The ones divisible by
give another power of
. Those divisible by
give yet another power of
. Continuing in this manner gives
for the power of in the prime factorization of
. The series is formally infinite, but the terms converge to
rapidly, as it is the reciprocal of an exponential function. For example, the power of
in
is just
(
is already greater than
).
Uses
The factorial is used in the definitions of combinations and permutations, as is the number of ways to order
distinct objects.
Problems
Introductory
- Find the units digit of the sum
(Source)
Intermediate
- Let
be the product of the first
positive odd integers. Find the largest integer
such that
is divisible by
(Source)
Olympiad
- Let
be the number of permutations of the set
, which have exactly
fixed points. Prove that
.
(Source)