Difference between revisions of "2024 AMC 10A Problems/Problem 14"

(Solution 1)
(Solution 1)
Line 5: Line 5:
 
==Solution 1==
 
==Solution 1==
 
Define = satisfying the following axioms
 
Define = satisfying the following axioms
<math>a=a</math>\\
+
<math>a=a</math>
<math>a=b \implies b=a</math>\\
+
 
<math>a=b, b=c \implies a=c</math>\\
+
<math>a=b \implies b=a</math>
Define <math>\mathbb{N}</math>\\
+
 
<math>0 = \emptyset = \{ \}</math>\\
+
<math>a=b, b=c \implies a=c</math>
<math>0 \in \mathbb{N}_0</math>\\
+
 
(note we use <math>\mathbb{N}_0</math> cause I'm one of those <math>0 \notin \mathbb{N}</math> people)\\
+
Define <math>\mathbb{N}</math>
<math>S(n) := n \cup \{n \}</math>\\
+
 
<math>n \in \mathbb{N}_0 \implies S(n) \in \mathbb{N}_0</math>\|
+
<math>0 = \emptyset = \{ \}</math>
<math>\forall n \in \mathbb{N}_0, n \not= 0, \exists m \in \mathbb{N}_0 : S(m)=n</math>\\
+
 
 +
<math>0 \in \mathbb{N}_0</math>
 +
 
 +
(note we use <math>\mathbb{N}_0</math> cause I'm one of those <math>0 \notin \mathbb{N}</math> people)
 +
 
 +
<math>S(n) := n \cup \{n \}</math>
 +
 
 +
<math>n \in \mathbb{N}_0 \implies S(n) \in \mathbb{N}_0</math>
 +
 
 +
<math>\forall n \in \mathbb{N}_0, n \not= 0, \exists m \in \mathbb{N}_0 : S(m)=n</math>

Revision as of 12:38, 11 August 2024

Since you came this far already, here's a math problem for you to try: What is 9+10? (A) 19 (B) 20 (C) 21 (D) 22 (E) 23

Solution 1

Define = satisfying the following axioms $a=a$

$a=b \implies b=a$

$a=b, b=c \implies a=c$

Define $\mathbb{N}$

$0 = \emptyset = \{ \}$

$0 \in \mathbb{N}_0$

(note we use $\mathbb{N}_0$ cause I'm one of those $0 \notin \mathbb{N}$ people)

$S(n) := n \cup \{n \}$

$n \in \mathbb{N}_0 \implies S(n) \in \mathbb{N}_0$

$\forall n \in \mathbb{N}_0, n \not= 0, \exists m \in \mathbb{N}_0 : S(m)=n$