Difference between revisions of "2003 AMC 10A Problems/Problem 16"

(added problem and solution)
 
(See Also)
Line 14: Line 14:
  
 
== See Also ==
 
== See Also ==
*[[2003 AMC 10A Problems]]
+
{{AMC10 box|year=2003|ab=A|num-b=15|num-a=17}}
*[[2003 AMC 10A Problems/Problem 15|Previous Problem]]
 
*[[2003 AMC 10A Problems/Problem 17|Next Problem]]
 
  
 
[[Category:Introductory Number Theory Problems]]
 
[[Category:Introductory Number Theory Problems]]

Revision as of 10:19, 15 January 2008

Problem

What is the units digit of $13^{2003}$?

$\mathrm{(A) \ } 1\qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 7\qquad \mathrm{(D) \ } 8\qquad \mathrm{(E) \ } 9$

Solution

$13^{2003}\equiv 3^{2003}\pmod{10}$

Since $3^4=81\equiv1\pmod{10}$:

$3^{2003}=(3^{4})^{500}\cdot3^{3}\equiv1^{500}\cdot27\equiv7\pmod{10}$

Therefore, the units digit is $7 \Rightarrow C$

See Also

2003 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions