Difference between revisions of "Hypercube"
m |
|||
Line 1: | Line 1: | ||
− | As used in geometry, a '''hypercube''' is an extrapolation of the cube or square to n dimensions. For example, a 4th dimensional hypercube is called a [[tesseract]]. Therefore, an n-dimensional hypercube is also known as an n-cube. It is best drawn and represented in non-Euclidean geometry. | + | As used in geometry, a '''hypercube''' is an extrapolation of the cube or square to n dimensions. When n is not specified, it's generally assumed to be 4. For example, a 4th dimensional hypercube is called a [[tesseract]]. Therefore, an n-dimensional hypercube is also known as an n-cube. It is best drawn and represented in non-Euclidean geometry. |
==Links== | ==Links== | ||
Line 8: | Line 8: | ||
==Tesseract== | ==Tesseract== | ||
A tesseract is the 4th dimensional hypercube. It is made by combining two cubes. | A tesseract is the 4th dimensional hypercube. It is made by combining two cubes. | ||
− | The net of a tesseract is composed of 8 cubes. It has the Schlaefli symbol <math>{4,3,3}</math>. | + | The net of a tesseract is composed of 8 cubes. It has the Schlaefli symbol <math>{4,3,3}</math>. One simple coordinate system for its vertices are <math>(\pm1, \pm1, \pm1, \pm1)</math>. The alternated tesseract is a 4D [[cross-polytope]], which coincidentally, is also it's dual. |
− | |||
+ | ==Extra Notes== | ||
+ | The alternated hypercube is known as a demicube. The dual of the hypercube is known as the cross-polytope. For dimensions n≥3, the only n-dimensional regular honeycomb is made of the hypercube. | ||
To see an <math>\mathfrak{e}</math>xample of a 4D cube, click here: [https://latex.artofproblemsolving.com/3/d/5/3d5fc91ddaa1838f367ade6a2baa0649edd32317.png] | To see an <math>\mathfrak{e}</math>xample of a 4D cube, click here: [https://latex.artofproblemsolving.com/3/d/5/3d5fc91ddaa1838f367ade6a2baa0649edd32317.png] | ||
[[Category: Geometry]] | [[Category: Geometry]] |
Revision as of 16:19, 20 August 2024
As used in geometry, a hypercube is an extrapolation of the cube or square to n dimensions. When n is not specified, it's generally assumed to be 4. For example, a 4th dimensional hypercube is called a tesseract. Therefore, an n-dimensional hypercube is also known as an n-cube. It is best drawn and represented in non-Euclidean geometry.
Links
Tesseract
A tesseract is the 4th dimensional hypercube. It is made by combining two cubes. The net of a tesseract is composed of 8 cubes. It has the Schlaefli symbol . One simple coordinate system for its vertices are . The alternated tesseract is a 4D cross-polytope, which coincidentally, is also it's dual.
Extra Notes
The alternated hypercube is known as a demicube. The dual of the hypercube is known as the cross-polytope. For dimensions n≥3, the only n-dimensional regular honeycomb is made of the hypercube.
To see an xample of a 4D cube, click here: [1]