Difference between revisions of "2002 AMC 12P Problems/Problem 25"

(Solution)
Line 15: Line 15:
  
 
== Solution ==
 
== Solution ==
 +
Suppose we substitute <math>\frac{a+b}{2} = x</math> and <math>\frac{a-b}{2} = y</math>. Sum to product gives us
 +
 +
<cmath>2sin{x}cos{y} = \frac{\sqrt{2}}{2}</cmath>
 +
 +
<cmath>2cos{x}cos{y} = \frac{\sqrt{6}}{2}.</cmath>
 +
 +
Dividing these equations tells us that <math>\tan{x} = \frac{1}{sqrt{3}}</math>, so <math>x = \frac{\pi}{6} + \pi n</math> for an integer <math>n</math>. Note that <math>a+b = 2x</math>, so <math>\sin{a+b} = \sin{2x} = \sin{\pi}{3} + 2\pi n = \frac{sqrt{3}}{2}</math>, so our answer is <math>\boxed{B}</math>.
 +
 +
== Solution 2 (doesn't work but gives the right answer) ==
 
Given <math>\begin{cases}\sin{a} + \sin{b} = \frac{\sqrt{2}}{2} \dots \textcircled{1}\\
 
Given <math>\begin{cases}\sin{a} + \sin{b} = \frac{\sqrt{2}}{2} \dots \textcircled{1}\\
 
\cos {a} + \cos {b} = \frac{\sqrt{6}}{2} \dots \textcircled{2}\end{cases} </math>
 
\cos {a} + \cos {b} = \frac{\sqrt{6}}{2} \dots \textcircled{2}\end{cases} </math>
Line 26: Line 35:
  
 
Comment: This problem is pretty much identical to [[2007 AMC 12A Problems/Problem 17|2007 AMC 12A Problem 17]] except with different numbers.
 
Comment: This problem is pretty much identical to [[2007 AMC 12A Problems/Problem 17|2007 AMC 12A Problem 17]] except with different numbers.
 
This solution is wrong since equation 1 square plus equation 2 squared gives sin a sin b and cos a cos b.
 
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2002|ab=P|num-b=24|after=Last question}}
 
{{AMC12 box|year=2002|ab=P|num-b=24|after=Last question}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:49, 28 September 2024

Problem

Let $a$ and $b$ be real numbers such that $\sin{a} + \sin{b} = \frac{\sqrt{2}}{2}$ and $\cos {a} + \cos {b} = \frac{\sqrt{6}}{2}.$ Find $\sin{(a+b)}.$

$\text{(A) }\frac{1}{2} \qquad \text{(B) }\frac{\sqrt{2}}{2} \qquad \text{(C) }\frac{\sqrt{3}}{2} \qquad \text{(D) }\frac{\sqrt{6}}{2} \qquad \text{(E) }1$

Solution

Suppose we substitute $\frac{a+b}{2} = x$ and $\frac{a-b}{2} = y$. Sum to product gives us

\[2sin{x}cos{y} = \frac{\sqrt{2}}{2}\]

\[2cos{x}cos{y} = \frac{\sqrt{6}}{2}.\]

Dividing these equations tells us that $\tan{x} = \frac{1}{sqrt{3}}$, so $x = \frac{\pi}{6} + \pi n$ for an integer $n$. Note that $a+b = 2x$, so $\sin{a+b} = \sin{2x} = \sin{\pi}{3} + 2\pi n = \frac{sqrt{3}}{2}$, so our answer is $\boxed{B}$.

Solution 2 (doesn't work but gives the right answer)

Given $\begin{cases}\sin{a} + \sin{b} = \frac{\sqrt{2}}{2} \dots \textcircled{1}\\ \cos {a} + \cos {b} = \frac{\sqrt{6}}{2} \dots \textcircled{2}\end{cases}$ We multiply both sides of the syetem, $\textcircled{1} \times \textcircled{2}$, then we get $(\sin{a}\cos{a}  + \sin{b} \cos{b}  )+( \sin{a}\cos{b}  + \sin{b} \cos{a} )= \frac{\sqrt{3}}{2}$. i.e. $(\sin{a}\cos{a}  + \sin{b} \cos{b}  )+\sin{(a+b)}= \frac{\sqrt{3}}{2}$.

We must get the sum of the first part of the equation, then we calculate $\textcircled{1}^2+\textcircled{2}^2$, we will get $\sin{a}\cos{a}  + \sin{b} \cos{b} = 0$ as $\sin^{2}{a}+\cos^{2}{a} = 1$ and $\sin^{2}{b}+\cos^{2}{b} = 1$.

So $\sin{(a+b)} = \frac{\sqrt{3}}{2} \Longrightarrow \boxed{\textbf{(C) }\frac{\sqrt{3}}{2}}$

Comment: This problem is pretty much identical to 2007 AMC 12A Problem 17 except with different numbers.

See also

2002 AMC 12P (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png