Difference between revisions of "Division Theorem"

m (Fixed spelling error: "iff" to "if")
m (Added Categories)
Line 1: Line 1:
 
For any positive integers <math> a </math> and <math> b </math>, there exist unique integers <math> q </math> and <math> r </math> such that <math> b = qa + r </math> and <math> 0 \le r < a </math>, with <math> r = 0 </math> if <math> a | b. </math>
 
For any positive integers <math> a </math> and <math> b </math>, there exist unique integers <math> q </math> and <math> r </math> such that <math> b = qa + r </math> and <math> 0 \le r < a </math>, with <math> r = 0 </math> if <math> a | b. </math>
 +
 +
{{stub}}
 +
[[Category:Mathematics]]
 +
[[Category:Theorems]]

Revision as of 12:18, 28 September 2024

For any positive integers $a$ and $b$, there exist unique integers $q$ and $r$ such that $b = qa + r$ and $0 \le r < a$, with $r = 0$ if $a | b.$

This article is a stub. Help us out by expanding it.