Difference between revisions of "2024 AMC 10A Problems/Problem 4"

m (Protected "2024 AMC 10A Problems/Problem 4" ([Edit=Allow only administrators] (expires 04:59, 8 November 2024 (UTC)) [Move=Allow only administrators] (expires 04:59, 8 November 2024 (UTC))) [cascading])
Line 1: Line 1:
 +
== Problem ==
  
 +
The number <math>2024</math> is written as the sum of not necessarily distinct two-digit numbers. What is the least number of two-digit numbers needed to write this sum?
 +
 +
<math>\textbf{(A) }20\qquad\textbf{(B) }21\qquad\textbf{(C) }22\qquad\textbf{(D) }23\qquad\textbf{(E) }24</math>
 +
 +
== Solution ==
 +
 +
Since we want the least number of two-digit numbers, we maximize the two-digit numbers by choosing as many <math>99</math>s as possible. Since <math>2024=99\cdot20+44\cdot1,</math> we choose twenty <math>99</math>s and one <math>44,</math> for a total of <math>\boxed{\textbf{(B) }21}</math> two-digit numbers.
 +
 +
~MRENTHUSIASM

Revision as of 15:38, 8 November 2024

Problem

The number $2024$ is written as the sum of not necessarily distinct two-digit numbers. What is the least number of two-digit numbers needed to write this sum?

$\textbf{(A) }20\qquad\textbf{(B) }21\qquad\textbf{(C) }22\qquad\textbf{(D) }23\qquad\textbf{(E) }24$

Solution

Since we want the least number of two-digit numbers, we maximize the two-digit numbers by choosing as many $99$s as possible. Since $2024=99\cdot20+44\cdot1,$ we choose twenty $99$s and one $44,$ for a total of $\boxed{\textbf{(B) }21}$ two-digit numbers.

~MRENTHUSIASM