Difference between revisions of "2024 AMC 12A Problems/Problem 18"

(Solution 1)
(Solution 1)
Line 14: Line 14:
 
Now we can find the angle of rotation (<math>\angle APB</math>) per move with the following steps:
 
Now we can find the angle of rotation (<math>\angle APB</math>) per move with the following steps:
 
<cmath>AP^2=(\frac{1}{2})^2+(1+\frac{\sqrt{3}}{2})^2=2+\sqrt{3}</cmath>
 
<cmath>AP^2=(\frac{1}{2})^2+(1+\frac{\sqrt{3}}{2})^2=2+\sqrt{3}</cmath>
<cmath>1^2=AP^2+AP^2-2(AP)(AP)cos\angle APB</cmath>
+
<cmath>1^2=AP^2+AP^2-2(AP)(AP)\cos\angle APB</cmath>
<cmath>1=2(2+\sqrt{3})(1-cos\angle APB)</cmath>
+
<cmath>1=2(2+\sqrt{3})(1-\cos\angle APB)</cmath>
<cmath>cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}</cmath>
+
<cmath>\cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}</cmath>
<cmath>cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}\cdot\frac{4-2\sqrt{3}}{4-2\sqrt{3}}</cmath>
+
<math>\cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}\cdot\frac{4-2\sqrt{3}}{4-2\sqrt{3}}<cmath>
<cmath>cos\angle APB=\frac{2\sqrt{3}}{4}=\frac{\sqrt{3}}{2}</cmath>
+
</cmath>\cos\angle APB=\frac{2\sqrt{3}}{4}=\frac{\sqrt{3}}{2}<cmath>
<cmath>\angle APB=30^\circ</cmath>
+
</cmath>\angle APB=30^\circ</math><math>
Since Vertex <math>C</math> is the closest one and <cmath>\angle BPC=360-180-30=150</cmath>
+
Since Vertex </math>C<math> is the closest one and <cmath>\angle BPC=360-180-30=150</cmath>
  
Vertex C will land on Vertex B when <math>\frac{150}{30}+1=\fbox{(A) 6}</math> cards are placed.
+
Vertex C will land on Vertex B when </math>\frac{150}{30}+1=\fbox{(A) 6}$ cards are placed.
  
 
~lptoggled, minor Latex edits by eevee9406
 
~lptoggled, minor Latex edits by eevee9406

Revision as of 20:06, 8 November 2024

Problem

On top of a rectangular card with sides of length $1$ and $2+\sqrt{3}$, an identical card is placed so that two of their diagonals line up, as shown ($\overline{AC}$, in this case).

[asy] defaultpen(fontsize(12)+0.85); size(150); real h=2.25; pair C=origin,B=(0,h),A=(1,h),D=(1,0),Dp=reflect(A,C)*D,Bp=reflect(A,C)*B; pair L=extension(A,Dp,B,C),R=extension(Bp,C,A,D); draw(L--B--A--Dp--C--Bp--A); draw(C--D--R); draw(L--C^^R--A,dashed+0.6); draw(A--C,black+0.6); dot("$C$",C,2*dir(C-R)); dot("$A$",A,1.5*dir(A-L)); dot("$B$",B,dir(B-R)); [/asy]

Continue the process, adding a third card to the second, and so on, lining up successive diagonals after rotating clockwise. In total, how many cards must be used until a vertex of a new card lands exactly on the vertex labeled $B$ in the figure?

$\textbf{(A) }6\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }12\qquad\textbf{(E) }\text{No new vertex will land on }B.$

Solution 1

Let the midpoint of $AC$ be $P$. We see that no matter how many moves we do, $P$ stays where it is. Now we can find the angle of rotation ($\angle APB$) per move with the following steps: \[AP^2=(\frac{1}{2})^2+(1+\frac{\sqrt{3}}{2})^2=2+\sqrt{3}\] \[1^2=AP^2+AP^2-2(AP)(AP)\cos\angle APB\] \[1=2(2+\sqrt{3})(1-\cos\angle APB)\] \[\cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}\] $\cos\angle APB=\frac{3+2\sqrt{3}}{4+2\sqrt{3}}\cdot\frac{4-2\sqrt{3}}{4-2\sqrt{3}}<cmath> </cmath>\cos\angle APB=\frac{2\sqrt{3}}{4}=\frac{\sqrt{3}}{2}<cmath> </cmath>\angle APB=30^\circ$$Since Vertex$C$is the closest one and <cmath>\angle BPC=360-180-30=150</cmath>

Vertex C will land on Vertex B when$ (Error compiling LaTeX. Unknown error_msg)\frac{150}{30}+1=\fbox{(A) 6}$ cards are placed.

~lptoggled, minor Latex edits by eevee9406

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png