Difference between revisions of "2024 AMC 12A Problems/Problem 23"
Pranavdabest (talk | contribs) m (→Solution 1 (Trigonometric Identities)) |
|||
Line 50: | Line 50: | ||
~tsun26 | ~tsun26 | ||
+ | |||
+ | ==Solution 2 (Another Indentity)== | ||
+ | |||
+ | First, notice that | ||
+ | |||
+ | <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}</cmath> | ||
+ | |||
+ | |||
+ | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16})</cmath> | ||
+ | |||
+ | |||
+ | Here, we make use of the fact that | ||
+ | |||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \tan^2 x+\tan^2 (\frac{\pi}{2}-x) &= (\tan x - \tan (\frac{\pi}{2} - x))^2 + 2\\ | ||
+ | &= (\tan (\frac{\pi}{2} - 2x) \cdot (1 + \tan x \tan (\frac{\pi}{2} - x))^2 + 2~~~~(\mathrm{difference~of~two~tan})\\ | ||
+ | &= (\tan (\frac{\pi}{2} - 2x) \cdot (1 + 1))^2 + 2\\ | ||
+ | &= 4\tan^2 (\frac{\pi}{2} - 2x) + 2 | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Hence, | ||
+ | |||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | (\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})(\tan^2\frac{3\pi}{16}+\tan^2 \frac{5\pi}{16}) &= (4\tan^2 (\frac{\pi}{2} - \frac{\pi}{16} \cdot 2) + 2)(4\tan^2 (\frac{\pi}{2} - \frac{3\pi}{16} \cdot 2) + 2)\\ | ||
+ | &= (4\tan^2 \frac{3\pi}{8} + 2)(4\tan^2 \frac{\pi}{8} + 2)\\ | ||
+ | &= 16\tan^2 \frac{3\pi}{8} \cdot \tan^2 \frac{\pi}{8} + 8(\tan^2 \frac{3\pi}{8} + \tan^2 \frac{\pi}{8}) + 4\\ | ||
+ | &= 16 + 8(4\tan^2 (\frac{\pi}{2} - \frac{\pi}{8} \cdot 2) + 2) + 4\\ | ||
+ | &= 16 + 8(4\tan^2 \frac{\pi}{4} + 2) + 4\\ | ||
+ | &= 16 + 8(4 + 2) + 4\\ | ||
+ | &= 68 | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Therefore, the answer is <math>\fbox{\textbf{(B) } 68}</math>. | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Reda_mandymath reda_mandymath] | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}} | {{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 23:48, 8 November 2024
Contents
Problem
What is the value of
Solution 1 (Trigonometric Identities)
First, notice that
Here, we make use of the fact that
Hence,
Note that
Hence,
Therefore, the answer is .
~tsun26
Solution 2 (Another Indentity)
First, notice that
Here, we make use of the fact that
Hence,
Therefore, the answer is .
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.