Difference between revisions of "2024 AMC 10B Problems/Problem 17"

(Solution 1)
Line 1: Line 1:
 +
==Problem==
 +
In a race among <math>5</math> snails, there is at most one tie, but that tie can involve any number of snails. For example, the result might be that Dazzler is first; Abby, Cyrus, and Elroy are tied for second; and Bruna is fifth. How many different results of the race are possible?
 +
<math>\textbf{(A) } 180 \qquad\textbf{(B) } 361 \qquad\textbf{(C) } 420 \qquad\textbf{(D) } 431 \qquad\textbf{(E) } 720</math>
 +
 
==Solution 1==
 
==Solution 1==
 
We perform casework based on how many snails tie. Let's say we're dealing with the following snails: <math>A,B,C,D,E</math>.
 
We perform casework based on how many snails tie. Let's say we're dealing with the following snails: <math>A,B,C,D,E</math>.

Revision as of 00:20, 14 November 2024

Problem

In a race among $5$ snails, there is at most one tie, but that tie can involve any number of snails. For example, the result might be that Dazzler is first; Abby, Cyrus, and Elroy are tied for second; and Bruna is fifth. How many different results of the race are possible? $\textbf{(A) } 180 \qquad\textbf{(B) } 361 \qquad\textbf{(C) } 420 \qquad\textbf{(D) } 431 \qquad\textbf{(E) } 720$

Solution 1

We perform casework based on how many snails tie. Let's say we're dealing with the following snails: $A,B,C,D,E$.

$5$ snails tied: All $5$ snails tied for $1$st place, so only $1$ way.

$4$ snails tied: $A,B,C,D$ all tied, and $E$ either got $1$st or last. ${5}\choose{1}$ ways to choose who isn't involved in the tie and $2$ ways to choose if that snail gets first or last, so $10$ ways.

$3$ snails tied: We have $ABC, D, E$. There are $3! = 6$ ways to determine the ranking of the $3$ groups. There are $5\choose2$ ways to determine the two snails not involved in the tie. So $6 \cdot 10 = 60$ ways.

$2$ snails tied: We have $AB, C, D, E$. There are $4! = 24$ ways to determine the ranking of the $4$ groups. There are $5\choose{3}$ ways to determine the three snail not involved in the tie. So $24 \cdot 10 = 240$ ways.

It's impossible to have "1 snail tie", so that case has $0$ ways.

Finally, there are no ties. We just arrange the $5$ snail, so $5! = 120$ ways.

The answer is $1+10+60+240+0+120 = \boxed{431}$.

~lprado