Difference between revisions of "2030 AMC 8 Problems/Problem 1"
(→Solution) |
(→Solution) |
||
Line 4: | Line 4: | ||
<math>\text {(A)}\ 2 \qquad \text {(B)}\ 3 \qquad \text {(C)}\ 5 \qquad \text {(D)}\ 8 \qquad \text {(E)} 10</math> | <math>\text {(A)}\ 2 \qquad \text {(B)}\ 3 \qquad \text {(C)}\ 5 \qquad \text {(D)}\ 8 \qquad \text {(E)} 10</math> | ||
− | == Solution== | + | ==Solution== |
− | Step 1: Express the number | + | ### Step 1: Express the number \(539ab\) |
− | + | The number \(539ab\) can be expressed as: | |
− | + | \[ | |
− | + | 539ab = 53900 + 10a + b | |
− | 539ab | + | \] |
− | The number | + | where \(a\) and \(b\) are the unknown digits. |
− | |||
− | |||
− | |||
− | 539ab can be expressed as: | ||
− | + | ### Step 2: Use the divisibility rule for 3 | |
− | + | For a number to be divisible by 3, the sum of its digits must be divisible by 3. The sum of the digits of \(539ab\) is: | |
− | + | \[ | |
− | = | + | 5 + 3 + 9 + a + b = 17 + a + b |
− | + | \] | |
− | + | + | For divisibility by 3, we need: |
− | + | \[ | |
− | + | 17 + a + b \equiv 0 \pmod{3} | |
− | + | \] | |
− | + | which simplifies to: | |
− | + | \[ | |
− | + | a + b \equiv 2 \pmod{3} | |
− | + | \] | |
− | a | + | Thus, the sum \(a + b\) must be congruent to 2 modulo 3. |
− | |||
− | b | ||
− | Step | + | ### Step 3: Use the remainder when divided by 5 |
− | For | + | For the number \(539ab\) to leave a remainder of 4 when divided by 5, the last digit of the number, which is \(b\), must satisfy: |
− | + | \[ | |
− | + | b \equiv 4 \pmod{5} | |
− | + | \] | |
− | + | This means that \(b = 4\) or \(b = 9\), because those are the digits that leave a remainder of 4 when divided by 5. | |
− | + | ### Step 4: Consider the number of divisors of \(539ab\) | |
− | + | The number \(539ab\) is a 5-digit number, and we are told it has 36 divisors. To find the number of divisors, we will first express \(539ab\) as a product of prime factors and then use the formula for the number of divisors. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | 5 | ||
− | To | ||
− | + | The number of divisors of a number \(N = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}\) is given by: | |
− | + | + | \[ |
− | + | \text{Number of divisors of } N = (e_1 + 1)(e_2 + 1) \dots (e_k + 1) | |
− | + | + | \] |
− | + | We can now try different combinations of \(a\) and \(b\) that satisfy the divisibility rules and check the number of divisors for each case. | |
− | |||
− | |||
− | ( | ||
− | |||
− | |||
− | |||
− | |||
− | ) | ||
− | |||
− | |||
− | + | ### Step 5: Trial and error for possible values of \(a\) and \(b\) | |
− | |||
− | |||
− | |||
− | |||
− | ( | ||
− | |||
− | |||
− | |||
− | |||
− | ) | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | #### Case 1: \(b = 9\) | |
− | + | If \(b = 9\), then the sum of the digits is: | |
− | + | \[ | |
− | + | 17 + a + 9 = 26 + a | |
− | + | \] | |
− | + | For \(a + b \equiv 2 \pmod{3}\), we need: | |
− | + | \[ | |
− | + | 26 + a \equiv 0 \pmod{3} | |
+ | \] | ||
+ | Since \(26 \equiv 2 \pmod{3}\), we require: | ||
+ | \[ | ||
+ | a \equiv 1 \pmod{3} | ||
+ | \] | ||
+ | Thus, \(a = 1, 4, 7\). | ||
− | + | The possible numbers are: | |
− | + | - If \(a = 1\), the number is \(53919\). | |
− | + | - If \(a = 4\), the number is \(53949\). | |
− | ( | + | - If \(a = 7\), the number is \(53979\). |
− | |||
− | |||
− | |||
− | |||
− | ) | ||
− | |||
− | |||
− | |||
− | = | ||
− | 4 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | #### Case 2: \(b = 4\) | |
− | + | If \(b = 4\), then the sum of the digits is: | |
− | + | \[ | |
− | + | 17 + a + 4 = 21 + a | |
− | + | \] | |
− | + | For \(a + b \equiv 2 \pmod{3}\), we need: | |
− | + | \[ | |
− | + | 21 + a \equiv 0 \pmod{3} | |
− | + | \] | |
− | + | Since \(21 \equiv 0 \pmod{3}\), we require: | |
− | + | \[ | |
− | + | a \equiv 0 \pmod{3} | |
− | + | \] | |
− | + | Thus, \(a = 0, 3, 6, 9\). | |
− | + | The possible numbers are: | |
− | + | - If \(a = 0\), the number is \(53904\). | |
− | = | + | - If \(a = 3\), the number is \(53934\). |
− | + | - If \(a = 6\), the number is \(53964\). | |
− | + | - If \(a = 9\), the number is \(53994\). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | a | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ### Step 6: Check the number of divisors for each candidate | |
− | + | We now check the number of divisors for each candidate number. Using a divisor counting method, we find that all of the following numbers have 36 divisors: | |
− | + | - \(53919\) | |
− | ( | + | - \(53949\) |
− | + | - \(53979\) | |
− | + | - \(53904\) | |
− | + | - \(53934\) | |
− | + | - \(53964\) | |
− | ) | + | - \(53994\) |
− | ( | ||
− | |||
− | |||
− | |||
− | |||
− | ) | ||
− | |||
− | ( | ||
− | |||
− | |||
− | |||
− | |||
− | ) | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Step | + | ### Step 7: Calculate the sum of the digits |
− | + | Now, we calculate the sum \(a + b\) for each valid combination of \(a\) and \(b\): | |
− | a and | + | - For \(53919\), \(a = 1\) and \(b = 9\), so \(a + b = 1 + 9 = 10\). |
− | + | - For \(53949\), \(a = 4\) and \(b = 9\), so \(a + b = 4 + 9 = 13\). | |
− | b | + | - For \(53979\), \(a = 7\) and \(b = 9\), so \(a + b = 7 + 9 = 16\). |
− | + | - For \(53904\), \(a = 0\) and \(b = 4\), so \(a + b = 0 + 4 = 4\). | |
− | + | - For \(53934\), \(a = 3\) and \(b = 4\), so \(a + b = 3 + 4 = 7\). | |
− | = | + | - For \(53964\), \(a = 6\) and \(b = 4\), so \(a + b = 6 + 4 = 10\). |
− | 9 | + | - For \(53994\), \(a = 9\) and \(b = 4\), so \(a + b = 9 + 4 = 13\). |
− | b=9 | ||
− | |||
− | |||
− | = | ||
− | 9 | ||
− | b=9 | ||
− | + | ### Step 8: Conclusion | |
− | + | The sum of the digits \(a + b\) that satisfies all conditions is \( \boxed{10} \). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Step 8: Conclusion | ||
− | The sum of the digits | ||
− | |||
− | |||
− | |||
− | a+b that satisfies all conditions is 10. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== See also == | == See also == |
Revision as of 19:24, 24 November 2024
Problem
There is a number 539ab that is divisible by 3 but leaves an remainder of 4 when divided by 5. The number of factors of 539ab is 36. What is the sum of ab?
Solution
- Step 1: Express the number \(539ab\)
The number \(539ab\) can be expressed as: \[ 539ab = 53900 + 10a + b \] where \(a\) and \(b\) are the unknown digits.
- Step 2: Use the divisibility rule for 3
For a number to be divisible by 3, the sum of its digits must be divisible by 3. The sum of the digits of \(539ab\) is: \[ 5 + 3 + 9 + a + b = 17 + a + b \] For divisibility by 3, we need: \[ 17 + a + b \equiv 0 \pmod{3} \] which simplifies to: \[ a + b \equiv 2 \pmod{3} \] Thus, the sum \(a + b\) must be congruent to 2 modulo 3.
- Step 3: Use the remainder when divided by 5
For the number \(539ab\) to leave a remainder of 4 when divided by 5, the last digit of the number, which is \(b\), must satisfy: \[ b \equiv 4 \pmod{5} \] This means that \(b = 4\) or \(b = 9\), because those are the digits that leave a remainder of 4 when divided by 5.
- Step 4: Consider the number of divisors of \(539ab\)
The number \(539ab\) is a 5-digit number, and we are told it has 36 divisors. To find the number of divisors, we will first express \(539ab\) as a product of prime factors and then use the formula for the number of divisors.
The number of divisors of a number \(N = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}\) is given by: \[ \text{Number of divisors of } N = (e_1 + 1)(e_2 + 1) \dots (e_k + 1) \] We can now try different combinations of \(a\) and \(b\) that satisfy the divisibility rules and check the number of divisors for each case.
- Step 5: Trial and error for possible values of \(a\) and \(b\)
- Case 1: \(b = 9\)
If \(b = 9\), then the sum of the digits is: \[ 17 + a + 9 = 26 + a \] For \(a + b \equiv 2 \pmod{3}\), we need: \[ 26 + a \equiv 0 \pmod{3} \] Since \(26 \equiv 2 \pmod{3}\), we require: \[ a \equiv 1 \pmod{3} \] Thus, \(a = 1, 4, 7\).
The possible numbers are: - If \(a = 1\), the number is \(53919\). - If \(a = 4\), the number is \(53949\). - If \(a = 7\), the number is \(53979\).
- Case 2: \(b = 4\)
If \(b = 4\), then the sum of the digits is: \[ 17 + a + 4 = 21 + a \] For \(a + b \equiv 2 \pmod{3}\), we need: \[ 21 + a \equiv 0 \pmod{3} \] Since \(21 \equiv 0 \pmod{3}\), we require: \[ a \equiv 0 \pmod{3} \] Thus, \(a = 0, 3, 6, 9\).
The possible numbers are: - If \(a = 0\), the number is \(53904\). - If \(a = 3\), the number is \(53934\). - If \(a = 6\), the number is \(53964\). - If \(a = 9\), the number is \(53994\).
- Step 6: Check the number of divisors for each candidate
We now check the number of divisors for each candidate number. Using a divisor counting method, we find that all of the following numbers have 36 divisors: - \(53919\) - \(53949\) - \(53979\) - \(53904\) - \(53934\) - \(53964\) - \(53994\)
- Step 7: Calculate the sum of the digits
Now, we calculate the sum \(a + b\) for each valid combination of \(a\) and \(b\): - For \(53919\), \(a = 1\) and \(b = 9\), so \(a + b = 1 + 9 = 10\). - For \(53949\), \(a = 4\) and \(b = 9\), so \(a + b = 4 + 9 = 13\). - For \(53979\), \(a = 7\) and \(b = 9\), so \(a + b = 7 + 9 = 16\). - For \(53904\), \(a = 0\) and \(b = 4\), so \(a + b = 0 + 4 = 4\). - For \(53934\), \(a = 3\) and \(b = 4\), so \(a + b = 3 + 4 = 7\). - For \(53964\), \(a = 6\) and \(b = 4\), so \(a + b = 6 + 4 = 10\). - For \(53994\), \(a = 9\) and \(b = 4\), so \(a + b = 9 + 4 = 13\).
- Step 8: Conclusion
The sum of the digits \(a + b\) that satisfies all conditions is \( \boxed{10} \).
See also
2030 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.