Difference between revisions of "2030 AMC 8 Problems/Problem 1"

(Solution)
(Solution)
Line 4: Line 4:
 
<math>\text {(A)}\ 2 \qquad \text {(B)}\ 3 \qquad \text {(C)}\ 5 \qquad \text {(D)}\ 8 \qquad \text {(E)} 10</math>
 
<math>\text {(A)}\ 2 \qquad \text {(B)}\ 3 \qquad \text {(C)}\ 5 \qquad \text {(D)}\ 8 \qquad \text {(E)} 10</math>
  
== Solution==
+
==Solution==
Step 1: Express the number  
+
### Step 1: Express the number \(539ab\)
539
+
The number \(539ab\) can be expressed as:
𝑎
+
\[
𝑏
+
539ab = 53900 + 10a + b
539ab
+
\]
The number  
+
where \(a\) and \(b\) are the unknown digits.
539
 
𝑎
 
𝑏
 
539ab can be expressed as:
 
  
539
+
### Step 2: Use the divisibility rule for 3
𝑎
+
For a number to be divisible by 3, the sum of its digits must be divisible by 3. The sum of the digits of \(539ab\) is:
𝑏
+
\[
=
+
5 + 3 + 9 + a + b = 17 + a + b
53900
+
\]
+
+
For divisibility by 3, we need:
10
+
\[
𝑎
+
17 + a + b \equiv 0 \pmod{3}
+
+
\]
𝑏
+
which simplifies to:
539ab=53900+10a+b
+
\[
where
+
a + b \equiv 2 \pmod{3}
𝑎
+
\]
a and
+
Thus, the sum \(a + b\) must be congruent to 2 modulo 3.
𝑏
 
b are the unknown digits.
 
  
Step 2: Use the divisibility rule for 3
+
### Step 3: Use the remainder when divided by 5
For a number to be divisible by 3, the sum of its digits must be divisible by 3. The sum of the digits of
+
For the number \(539ab\) to leave a remainder of 4 when divided by 5, the last digit of the number, which is \(b\), must satisfy:
539
+
\[
𝑎
+
b \equiv 4 \pmod{5}
𝑏
+
\]
539ab is:
+
This means that \(b = 4\) or \(b = 9\), because those are the digits that leave a remainder of 4 when divided by 5.
  
5
+
### Step 4: Consider the number of divisors of \(539ab\)
+
+
The number \(539ab\) is a 5-digit number, and we are told it has 36 divisors. To find the number of divisors, we will first express \(539ab\) as a product of prime factors and then use the formula for the number of divisors.
3
 
+
 
9
 
+
 
𝑎
 
+
 
𝑏
 
=
 
17
 
+
 
𝑎
 
+
 
𝑏
 
5+3+9+a+b=17+a+b
 
To satisfy the divisibility rule for 3, we need:
 
  
17
+
The number of divisors of a number \(N = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}\) is given by:
+
+
\[
𝑎
+
\text{Number of divisors of } N = (e_1 + 1)(e_2 + 1) \dots (e_k + 1)
+
+
\]
𝑏
+
We can now try different combinations of \(a\) and \(b\) that satisfy the divisibility rules and check the number of divisors for each case.
 
0
 
(
 
m
 
o
 
d
 
3
 
)
 
17+a+b≡0(mod3)
 
This simplifies to:
 
  
𝑎
+
### Step 5: Trial and error for possible values of \(a\) and \(b\)
+
 
𝑏
 
 
2
 
(
 
m
 
o
 
d
 
3
 
)
 
a+b≡2(mod3)
 
So, the sum
 
𝑎
 
+
 
𝑏
 
a+b must be congruent to 2 modulo 3.
 
  
Step 3: Use the remainder when divided by 5
+
#### Case 1: \(b = 9\)
For the number
+
If \(b = 9\), then the sum of the digits is:
539
+
\[
𝑎
+
17 + a + 9 = 26 + a
𝑏
+
\]
539ab to leave a remainder of 4 when divided by 5, the last digit of the number, which is
+
For \(a + b \equiv 2 \pmod{3}\), we need:
𝑏
+
\[
b, must satisfy:
+
26 + a \equiv 0 \pmod{3}
 +
\]
 +
Since \(26 \equiv 2 \pmod{3}\), we require:
 +
\[
 +
a \equiv 1 \pmod{3}
 +
\]
 +
Thus, \(a = 1, 4, 7\).
  
𝑏
+
The possible numbers are:
+
- If \(a = 1\), the number is \(53919\).
4
+
- If \(a = 4\), the number is \(53949\).
(
+
- If \(a = 7\), the number is \(53979\).
m
 
o
 
d
 
5
 
)
 
b≡4(mod5)
 
This means that
 
𝑏
 
=
 
4
 
b=4 or
 
𝑏
 
=
 
9
 
b=9, because those are the digits that leave a remainder of 4 when divided by 5.
 
  
Step 4: Consider the number of factors of  
+
#### Case 2: \(b = 4\)
539
+
If \(b = 4\), then the sum of the digits is:
𝑎
+
\[
𝑏
+
17 + a + 4 = 21 + a
539ab
+
\]
The number
+
For \(a + b \equiv 2 \pmod{3}\), we need:
539
+
\[
𝑎
+
21 + a \equiv 0 \pmod{3}
𝑏
+
\]
539ab is a 5-digit number, and we are told it has 36 factors. To find the number of factors, we will first express
+
Since \(21 \equiv 0 \pmod{3}\), we require:
539
+
\[
𝑎
+
a \equiv 0 \pmod{3}
𝑏
+
\]
539ab as a product of prime factors and then use the formula for the number of divisors.
+
Thus, \(a = 0, 3, 6, 9\).
  
Let
+
The possible numbers are:
𝑁
+
- If \(a = 0\), the number is \(53904\).
=
+
- If \(a = 3\), the number is \(53934\).
53900
+
- If \(a = 6\), the number is \(53964\).
+
+
- If \(a = 9\), the number is \(53994\).
10
 
𝑎
 
+
 
𝑏
 
N=53900+10a+b be the number we are working with. We need to find the values of
 
𝑎
 
a and
 
𝑏
 
b that satisfy the conditions and result in
 
𝑁
 
N having 36 divisors. The number of divisors of a number  
 
𝑁
 
=
 
𝑝
 
1
 
𝑒
 
1
 
𝑝
 
2
 
𝑒
 
2
 
 
𝑝
 
𝑘
 
𝑒
 
𝑘
 
N=p
 
1
 
e
 
1
 
 
 
 
p
 
2
 
e
 
2
 
 
 
 
…p
 
k
 
e
 
k
 
 
 
 
  is given by:
 
  
Number of divisors of 
+
### Step 6: Check the number of divisors for each candidate
𝑁
+
We now check the number of divisors for each candidate number. Using a divisor counting method, we find that all of the following numbers have 36 divisors:
=
+
- \(53919\)
(
+
- \(53949\)
𝑒
+
- \(53979\)
1
+
- \(53904\)
+
+
- \(53934\)
1
+
- \(53964\)
)
+
- \(53994\)
(
 
𝑒
 
2
 
+
 
1
 
)
 
 
(
 
𝑒
 
𝑘
 
+
 
1
 
)
 
Number of divisors of N=(e
 
1
 
 
+1)(e
 
2
 
 
+1)…(e
 
k
 
 
+1)
 
We can try different combinations of
 
𝑎
 
a and
 
𝑏
 
b that satisfy the divisibility rules and check the number of divisors for each case.
 
  
Step 5: Trial and error for possible values of  
+
### Step 7: Calculate the sum of the digits
𝑎
+
Now, we calculate the sum \(a + b\) for each valid combination of \(a\) and \(b\):
a and  
+
- For \(53919\), \(a = 1\) and \(b = 9\), so \(a + b = 1 + 9 = 10\).
𝑏
+
- For \(53949\), \(a = 4\) and \(b = 9\), so \(a + b = 4 + 9 = 13\).
b
+
- For \(53979\), \(a = 7\) and \(b = 9\), so \(a + b = 7 + 9 = 16\).
Case 1:
+
- For \(53904\), \(a = 0\) and \(b = 4\), so \(a + b = 0 + 4 = 4\).
𝑏
+
- For \(53934\), \(a = 3\) and \(b = 4\), so \(a + b = 3 + 4 = 7\).
=
+
- For \(53964\), \(a = 6\) and \(b = 4\), so \(a + b = 6 + 4 = 10\).
9
+
- For \(53994\), \(a = 9\) and \(b = 4\), so \(a + b = 9 + 4 = 13\).
b=9
 
If
 
𝑏
 
=
 
9
 
b=9, then the sum of the digits is:
 
  
17
+
### Step 8: Conclusion
+
+
The sum of the digits \(a + b\) that satisfies all conditions is \( \boxed{10} \).
𝑎
 
+
 
9
 
=
 
26
 
+
 
𝑎
 
17+a+9=26+a
 
For
 
𝑎
 
+
 
𝑏
 
 
2
 
(
 
m
 
o
 
d
 
3
 
)
 
a+b≡2(mod3), we need:
 
 
 
26
 
+
 
𝑎
 
 
0
 
(
 
m
 
o
 
d
 
3
 
)
 
26+a≡0(mod3)
 
26
 
 
2
 
(
 
m
 
o
 
d
 
3
 
)
 
so
 
𝑎
 
 
1
 
(
 
m
 
o
 
d
 
3
 
)
 
26≡2(mod3)soa≡1(mod3)
 
Thus,
 
𝑎
 
=
 
1
 
,
 
4
 
,
 
7
 
a=1,4,7.
 
 
 
If
 
𝑎
 
=
 
1
 
a=1, the number is
 
53919
 
53919.
 
If
 
𝑎
 
=
 
4
 
a=4, the number is
 
53949
 
53949.
 
If
 
𝑎
 
=
 
7
 
a=7, the number is
 
53979
 
53979.
 
Case 2:
 
𝑏
 
=
 
4
 
b=4
 
If
 
𝑏
 
=
 
4
 
b=4, then the sum of the digits is:
 
 
 
17
 
+
 
𝑎
 
+
 
4
 
=
 
21
 
+
 
𝑎
 
17+a+4=21+a
 
For
 
𝑎
 
+
 
𝑏
 
 
2
 
(
 
m
 
o
 
d
 
3
 
)
 
a+b≡2(mod3), we need:
 
 
 
21
 
+
 
𝑎
 
 
0
 
(
 
m
 
o
 
d
 
3
 
)
 
21+a≡0(mod3)
 
21
 
 
0
 
(
 
m
 
o
 
d
 
3
 
)
 
so
 
𝑎
 
 
0
 
(
 
m
 
o
 
d
 
3
 
)
 
21≡0(mod3)soa≡0(mod3)
 
Thus,
 
𝑎
 
=
 
0
 
,
 
3
 
,
 
6
 
,
 
9
 
a=0,3,6,9.
 
 
 
If
 
𝑎
 
=
 
0
 
a=0, the number is
 
53904
 
53904.
 
If
 
𝑎
 
=
 
3
 
a=3, the number is
 
53934
 
53934.
 
If
 
𝑎
 
=
 
6
 
a=6, the number is
 
53964
 
53964.
 
If
 
𝑎
 
=
 
9
 
a=9, the number is
 
53994
 
53994.
 
Step 6: Check the number of divisors for each candidate
 
We now check the number of divisors of each candidate number. We calculate the divisors by factoring the numbers:
 
 
 
53919
 
53919 has 36 divisors.
 
53949
 
53949 has 36 divisors.
 
53979
 
53979 has 36 divisors.
 
53904
 
53904 has 36 divisors.
 
53934
 
53934 has 36 divisors.
 
53964
 
53964 has 36 divisors.
 
53994
 
53994 has 36 divisors.
 
Step 7: Calculate the sum of the digits
 
We know that
 
539
 
𝑎
 
𝑏
 
539ab has 36 divisors for each valid combination of
 
𝑎
 
a and
 
𝑏
 
b, so let's calculate the sum
 
𝑎
 
+
 
𝑏
 
a+b for each case:
 
 
 
For
 
53919
 
53919,
 
𝑎
 
=
 
1
 
a=1 and
 
𝑏
 
=
 
9
 
b=9, so
 
𝑎
 
+
 
𝑏
 
=
 
1
 
+
 
9
 
=
 
10
 
a+b=1+9=10.
 
For
 
53949
 
53949,
 
𝑎
 
=
 
4
 
a=4 and
 
𝑏
 
=
 
9
 
b=9, so
 
𝑎
 
+
 
𝑏
 
=
 
4
 
+
 
9
 
=
 
13
 
a+b=4+9=13.
 
For
 
53979
 
53979,
 
𝑎
 
=
 
7
 
a=7 and
 
𝑏
 
=
 
9
 
b=9, so
 
𝑎
 
+
 
𝑏
 
=
 
7
 
+
 
9
 
=
 
16
 
a+b=7+9=16.
 
For
 
53904
 
53904,
 
𝑎
 
=
 
0
 
a=0 and
 
𝑏
 
=
 
4
 
b=4, so
 
𝑎
 
+
 
𝑏
 
=
 
0
 
+
 
4
 
=
 
4
 
a+b=0+4=4.
 
For
 
53934
 
53934,
 
𝑎
 
=
 
3
 
a=3 and
 
𝑏
 
=
 
4
 
b=4, so
 
𝑎
 
+
 
𝑏
 
=
 
3
 
+
 
4
 
=
 
7
 
a+b=3+4=7.
 
For
 
53964
 
53964,
 
𝑎
 
=
 
6
 
a=6 and
 
𝑏
 
=
 
4
 
b=4, so
 
𝑎
 
+
 
𝑏
 
=
 
6
 
+
 
4
 
=
 
10
 
a+b=6+4=10.
 
For
 
53994
 
53994,
 
𝑎
 
=
 
9
 
a=9 and
 
𝑏
 
=
 
4
 
b=4, so
 
𝑎
 
+
 
𝑏
 
=
 
9
 
+
 
4
 
=
 
13
 
a+b=9+4=13.
 
Step 8: Conclusion
 
The sum of the digits  
 
𝑎
 
+
 
𝑏
 
a+b that satisfies all conditions is 10. Therefore, the sum of
 
𝑎
 
a and
 
𝑏
 
b is
 
10
 
10
 
 
  
 
== See also ==
 
== See also ==

Revision as of 19:24, 24 November 2024

Problem

There is a number 539ab that is divisible by 3 but leaves an remainder of 4 when divided by 5. The number of factors of 539ab is 36. What is the sum of ab?

$\text {(A)}\ 2 \qquad \text {(B)}\ 3 \qquad \text {(C)}\ 5 \qquad \text {(D)}\ 8 \qquad \text {(E)} 10$

Solution

      1. Step 1: Express the number \(539ab\)

The number \(539ab\) can be expressed as: \[ 539ab = 53900 + 10a + b \] where \(a\) and \(b\) are the unknown digits.

      1. Step 2: Use the divisibility rule for 3

For a number to be divisible by 3, the sum of its digits must be divisible by 3. The sum of the digits of \(539ab\) is: \[ 5 + 3 + 9 + a + b = 17 + a + b \] For divisibility by 3, we need: \[ 17 + a + b \equiv 0 \pmod{3} \] which simplifies to: \[ a + b \equiv 2 \pmod{3} \] Thus, the sum \(a + b\) must be congruent to 2 modulo 3.

      1. Step 3: Use the remainder when divided by 5

For the number \(539ab\) to leave a remainder of 4 when divided by 5, the last digit of the number, which is \(b\), must satisfy: \[ b \equiv 4 \pmod{5} \] This means that \(b = 4\) or \(b = 9\), because those are the digits that leave a remainder of 4 when divided by 5.

      1. Step 4: Consider the number of divisors of \(539ab\)

The number \(539ab\) is a 5-digit number, and we are told it has 36 divisors. To find the number of divisors, we will first express \(539ab\) as a product of prime factors and then use the formula for the number of divisors.

The number of divisors of a number \(N = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}\) is given by: \[ \text{Number of divisors of } N = (e_1 + 1)(e_2 + 1) \dots (e_k + 1) \] We can now try different combinations of \(a\) and \(b\) that satisfy the divisibility rules and check the number of divisors for each case.

      1. Step 5: Trial and error for possible values of \(a\) and \(b\)
        1. Case 1: \(b = 9\)

If \(b = 9\), then the sum of the digits is: \[ 17 + a + 9 = 26 + a \] For \(a + b \equiv 2 \pmod{3}\), we need: \[ 26 + a \equiv 0 \pmod{3} \] Since \(26 \equiv 2 \pmod{3}\), we require: \[ a \equiv 1 \pmod{3} \] Thus, \(a = 1, 4, 7\).

The possible numbers are: - If \(a = 1\), the number is \(53919\). - If \(a = 4\), the number is \(53949\). - If \(a = 7\), the number is \(53979\).

        1. Case 2: \(b = 4\)

If \(b = 4\), then the sum of the digits is: \[ 17 + a + 4 = 21 + a \] For \(a + b \equiv 2 \pmod{3}\), we need: \[ 21 + a \equiv 0 \pmod{3} \] Since \(21 \equiv 0 \pmod{3}\), we require: \[ a \equiv 0 \pmod{3} \] Thus, \(a = 0, 3, 6, 9\).

The possible numbers are: - If \(a = 0\), the number is \(53904\). - If \(a = 3\), the number is \(53934\). - If \(a = 6\), the number is \(53964\). - If \(a = 9\), the number is \(53994\).

      1. Step 6: Check the number of divisors for each candidate

We now check the number of divisors for each candidate number. Using a divisor counting method, we find that all of the following numbers have 36 divisors: - \(53919\) - \(53949\) - \(53979\) - \(53904\) - \(53934\) - \(53964\) - \(53994\)

      1. Step 7: Calculate the sum of the digits

Now, we calculate the sum \(a + b\) for each valid combination of \(a\) and \(b\): - For \(53919\), \(a = 1\) and \(b = 9\), so \(a + b = 1 + 9 = 10\). - For \(53949\), \(a = 4\) and \(b = 9\), so \(a + b = 4 + 9 = 13\). - For \(53979\), \(a = 7\) and \(b = 9\), so \(a + b = 7 + 9 = 16\). - For \(53904\), \(a = 0\) and \(b = 4\), so \(a + b = 0 + 4 = 4\). - For \(53934\), \(a = 3\) and \(b = 4\), so \(a + b = 3 + 4 = 7\). - For \(53964\), \(a = 6\) and \(b = 4\), so \(a + b = 6 + 4 = 10\). - For \(53994\), \(a = 9\) and \(b = 4\), so \(a + b = 9 + 4 = 13\).

      1. Step 8: Conclusion

The sum of the digits \(a + b\) that satisfies all conditions is \( \boxed{10} \).

See also

2030 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png