Difference between revisions of "Ellipse properties"
(Created page with "Definitions shown in Ellipse ==Ellipse and tangent== Let an ellipse <math>\theta</math> with foci <math>F, F'</math> and the point <math>S \in FF'</math> outside <math>\...") |
(→Ellipse and tangent) |
||
Line 2: | Line 2: | ||
==Ellipse and tangent== | ==Ellipse and tangent== | ||
− | Let an ellipse <math>\theta</math> with foci <math>F, F'</math> and the point <math>S \in FF'</math> outside <math>\theta</math> be given. | + | [[File:Ellipse tagent.png|350px|right]] |
− | Let <math>\Omega</math> be the circumcircle of given ellipse. | + | Let an ellipse <math>\theta</math> with foci <math>F, F'</math> and the point <math>S \in FF'</math> outside <math>\theta</math> be given. |
+ | |||
+ | Let <math>\Omega</math> centered at <math>O</math> be the circumcircle of given ellipse. | ||
+ | |||
Let <math>S'</math> be the inverse of a point <math>S</math> with respect to <math>\Omega.</math> | Let <math>S'</math> be the inverse of a point <math>S</math> with respect to <math>\Omega.</math> | ||
+ | |||
Let <math>C</math> be the point of the ellipse such that <math>CS' \perp FF'.</math> | Let <math>C</math> be the point of the ellipse such that <math>CS' \perp FF'.</math> | ||
+ | |||
Prove that <math>CS</math> is tangent to the ellipse. | Prove that <math>CS</math> is tangent to the ellipse. | ||
<i><b>Proof</b></i> | <i><b>Proof</b></i> | ||
− | Let equation of the ellipse be < | + | Let equation of the ellipse be <cmath>\frac {x^2}{a^2} + \frac {y^2}{b^2} = 1 \implies \frac {x}{a^2} + \frac {yy'}{b^2} = 0.</cmath> |
+ | |||
+ | The radus of the circumcircle <math>\Omega</math> is <math>a,</math> so <math>SO \cdot S'O = a^2.</math> | ||
− | |||
Denote <math>y = CS', x = OS',</math> so the point <math>C(x,y).</math> | Denote <math>y = CS', x = OS',</math> so the point <math>C(x,y).</math> | ||
The slope of the tangent at point <math>C</math> is: | The slope of the tangent at point <math>C</math> is: |
Latest revision as of 14:28, 12 December 2024
Definitions shown in Ellipse
Ellipse and tangent
Let an ellipse with foci and the point outside be given.
Let centered at be the circumcircle of given ellipse.
Let be the inverse of a point with respect to
Let be the point of the ellipse such that
Prove that is tangent to the ellipse.
Proof
Let equation of the ellipse be
The radus of the circumcircle is so
Denote so the point The slope of the tangent at point is:
vladimir.shelomovskii@gmail.com, vvsss