Difference between revisions of "2021 AIME I Problems/Problem 7"
MRENTHUSIASM (talk | contribs) (→Solution 1) |
Yangomango (talk | contribs) (→Solution 1) |
||
Line 12: | Line 12: | ||
If <math>k = 1</math>, then <math>m \equiv n \equiv 1 \pmod 4</math>. This corresponds to choosing two elements from the set <math>\{1, 5, 9, 13, 17, 21, 25, 29\}</math>. There are <math>\binom 82</math> ways to do so. | If <math>k = 1</math>, then <math>m \equiv n \equiv 1 \pmod 4</math>. This corresponds to choosing two elements from the set <math>\{1, 5, 9, 13, 17, 21, 25, 29\}</math>. There are <math>\binom 82</math> ways to do so. | ||
− | If <math>k < 1</math>, by multiplying <math>m</math> and <math>n</math> by the same constant <math>c = \frac{1}{k}</math>, we have that <math>mc \equiv nc \equiv 1 \pmod 4</math>. Then either <math>m \equiv n \equiv 1 \pmod 4</math>, or <math>m \equiv n \equiv 3 \pmod 4</math>. But the first case was already counted, so we don't need to consider that case. The other case corresponds to choosing two numbers from the set <math>\{3, 7, 11, 15, 19, 23, 27\}</math>. There are <math>\binom 72</math> ways here. (This argument seems to have a logical flaw) | + | If <math>k < 1</math>, by multiplying <math>m</math> and <math>n</math> by the same constant <math>c = \frac{1}{k}</math>, we have that <math>mc \equiv nc \equiv 1 \pmod 4</math>. Then either <math>m \equiv n \equiv 1 \pmod 4</math>, or <math>m \equiv n \equiv 3 \pmod 4</math>. But the first case was already counted, so we don't need to consider that case. The other case corresponds to choosing two numbers from the set <math>\{3, 7, 11, 15, 19, 23, 27\}</math>. There are <math>\binom 72</math> ways here. (This argument seems to have a logical flaw *check note at bottom*) |
Finally, if <math>k > 1</math>, note that <math>k</math> must be an integer. This means that <math>m, n</math> belong to the set <math>\{k, 5k, 9k, \dots\}</math>, or <math>\{3k, 7k, 11k, \dots\}</math>. Taking casework on <math>k</math>, we get the sets <math>\{2, 10, 18, 26\}, \{6, 14, 22, 30\}, \{4, 20\}, \{12, 28\}</math>. Some sets have been omitted; this is because they were counted in the other cases already. This sums to <math>\binom 42 + \binom 42 + \binom 22 + \binom 22</math>. | Finally, if <math>k > 1</math>, note that <math>k</math> must be an integer. This means that <math>m, n</math> belong to the set <math>\{k, 5k, 9k, \dots\}</math>, or <math>\{3k, 7k, 11k, \dots\}</math>. Taking casework on <math>k</math>, we get the sets <math>\{2, 10, 18, 26\}, \{6, 14, 22, 30\}, \{4, 20\}, \{12, 28\}</math>. Some sets have been omitted; this is because they were counted in the other cases already. This sums to <math>\binom 42 + \binom 42 + \binom 22 + \binom 22</math>. | ||
Line 19: | Line 19: | ||
This solution was brought to you by ~Leonard_my_dude~ | This solution was brought to you by ~Leonard_my_dude~ | ||
+ | |||
+ | |||
+ | ==Note: Detailed Explanation for <math>m \equiv n \equiv 3 \pmod 4</math>== | ||
+ | Many of the solutions I see here lack an explicit explanation for why every solution to <math>m \equiv n \equiv 3 \pmod 4</math> constitutes a valid solution to the problem, so I will explain it here. The reason why all solutions where <math>m \equiv n \equiv 1 \pmod 4</math> works is pretty intuitive, as <math>\frac{m}{n}</math> would then be able to be expressed as <math>\frac{4a + 1}{4b + 1}</math>. Similarly, note that <math>-(4x + 1) \equiv 3 \pmod 4</math>. Thus, when solving the equation for <math>\frac{m}{n} = \frac{4a + 1}{4b + 1}</math>, every case in which <math>m \equiv n \equiv 3 \pmod 4</math> will produce a valid solution when <math>a</math> and <math>b</math> are both negative. For example, when <math>m = 7</math> and <math>n = 11</math>, <math>a = -2</math> and <math>b = -3</math> gives <math>\frac{4a + 1}{4b + 1} = \frac{-7}{-11} = \frac{7}{11}</math>. Thus, we add <math>\binom 72</math> as every case where <math>m \equiv n \equiv 3 \pmod 4</math> produces a valid solution. | ||
+ | |||
+ | - yangomango | ||
==Solution 2== | ==Solution 2== |
Latest revision as of 12:18, 27 December 2024
Contents
Problem
Find the number of pairs of positive integers with such that there exists a real number satisfying
Solution 1
It is trivial that the maximum value of is , is achieved at for some integer .
This implies that , and that and , for integers .
Taking their ratio, we have It remains to find all that satisfy this equation.
If , then . This corresponds to choosing two elements from the set . There are ways to do so.
If , by multiplying and by the same constant , we have that . Then either , or . But the first case was already counted, so we don't need to consider that case. The other case corresponds to choosing two numbers from the set . There are ways here. (This argument seems to have a logical flaw *check note at bottom*)
Finally, if , note that must be an integer. This means that belong to the set , or . Taking casework on , we get the sets . Some sets have been omitted; this is because they were counted in the other cases already. This sums to .
In total, there are pairs of .
This solution was brought to you by ~Leonard_my_dude~
Note: Detailed Explanation for
Many of the solutions I see here lack an explicit explanation for why every solution to constitutes a valid solution to the problem, so I will explain it here. The reason why all solutions where works is pretty intuitive, as would then be able to be expressed as . Similarly, note that . Thus, when solving the equation for , every case in which will produce a valid solution when and are both negative. For example, when and , and gives . Thus, we add as every case where produces a valid solution.
- yangomango
Solution 2
In order for , .
This happens when mod
This means that and for any integers and .
As in Solution 1, take the ratio of the two equations:
Now notice that the numerator and denominator of are both odd, which means that and have the same power of two (the powers of 2 cancel out).
Let the common power be : then , and where and are integers between 1 and 30.
We can now rewrite the equation:
Now it is easy to tell that mod and mod . However, there is another case: that
mod and mod . This is because multiplying both and by will not change the fraction, but each congruence will be changed to mod mod .
From the first set of congruences, we find that and can be two of .
From the second set of congruences, we find that and can be two of .
Now all we have to do is multiply by to get back to and . Let’s organize the solutions in order of increasing values of , keeping in mind that and are bounded between 1 and 30.
For we get .
For we get
For we get
Note that since will cancel out a factor of 4 from , and must contain a factor of 4. Again, will never contribute a factor of 2. Simply inspecting, we see two feasible values for and such that .
If we increase the value of more, there will be less than two integers in our sets, so we are done there.
There are 8 numbers in the first set, 7 in the second, 4 in the third, 4 in the fourth, 2 in the fifth, and 2 in the sixth.
In each of these sets we can choose 2 numbers to be and and then assign them in increasing order. Thus there are:
possible pairs that satisfy the conditions.
-KingRavi
Solution 3
We know that the range of sine is between and , inclusive.
Thus, the only way for the sum to be is for .
Note that .
Assuming and are both positive, and could be . There are ways, so .
If both are negative, and could be . There are ways, so .
However, the pair could also be and so on. The same goes for some other pairs.
In total there are of these extra pairs.
The answer is .
Solution 4
The equation implies that . Therefore, we can write as and as for integers and . Then, . Cross multiplying, we get . Let so the equation becomes . Let and , then the equation becomes . Note that and can vary accordingly, and . Next, we do casework on :
If :
Once and are determined, is determined, so . and . Therefore, there are ways for this case such that .
If :
and . Therefore, there are ways such that .
If :
Note that since in this case will have a factor of 2, which will cancel out a factor of 2 in , and we need the left hand side to divide 4. Also, so it is odd and will therefore never contribute a factor of 2. and . Following the condition , we conclude that there are ways for this case.
If :
Adding all the cases up, we obtain
Remark
The graphs of and are shown here in Desmos: https://www.desmos.com/calculator/busxadywja
Move the sliders around for and to observe the geometric representation generated by each pair
~MRENTHUSIASM (inspired by TheAMCHub)
Video Solution
~mathproblemsolvingskills
Video Solution
https://www.youtube.com/watch?v=LUkQ7R1DqKo
~Mathematical Dexterity
See Also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.