Difference between revisions of "30-60-90 triangle"
Line 7: | Line 7: | ||
− | == | + | ==Proofs== |
Consider a right triangle with angles \(30^\circ\), \(60^\circ\), and \(90^\circ\). Let: | Consider a right triangle with angles \(30^\circ\), \(60^\circ\), and \(90^\circ\). Let: | ||
− | + | * \(a\): side opposite the \(30^\circ\) angle | |
− | + | * \(b\): side opposite the \(60^\circ\) angle | |
− | + | * \(c\): hypotenuse | |
===Using trigonometric identities=== | ===Using trigonometric identities=== | ||
Line 18: | Line 18: | ||
==== 1. Hypotenuse <math>AC</math> ==== | ==== 1. Hypotenuse <math>AC</math> ==== | ||
− | \(\sin(30^\circ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{ | + | \(\sin(30^\circ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{AB}{AC}\) |
− | + | And: | |
− | <math>\boxed{\ | + | \(\sin(30^\circ) = \frac{1}{2} = \frac{AB}{AC}\) |
+ | |||
+ | |||
+ | |||
+ | <math>\boxed{\frac{{AB}}{{AC}} = \frac{1}{2} \text{ or } \bf{2AB=AC}}</math> | ||
==== 2. Side <math> AB </math> ==== | ==== 2. Side <math> AB </math> ==== | ||
− | \(\cos(30^\circ) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{ | + | \(\cos(30^\circ) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{BC}{AC}\) |
Since \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\): | Since \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\): | ||
− | + | <math>\frac{\sqrt{3}}{2} = \frac{BC}{AC} \implies BC = AC \cdot \frac{\sqrt{3}}{2} \implies \boxed{\bf{BC = AB \cdot \sqrt{3}}}</math> | |
+ | |||
+ | |||
+ | In conclusion, the side lengths are: | ||
+ | |||
+ | |||
+ | |||
+ | \begin{array}{l} | ||
+ | \text{Opposite } 30^\circ: AB \\ | ||
+ | \text{Opposite } 60^\circ: AB\sqrt{3} \\ | ||
+ | \text{Hypotenuse } : 2AB | ||
+ | \end{array} | ||
+ | |||
+ | Therefore, the side ratios are <math>\boxed{1:\sqrt{3}:2}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
{{stub}} | {{stub}} |
Revision as of 14:51, 4 January 2025
A 30-60-90 triangle is a right triangle with a 30 degree angle, a 60 degree angle,a 90 degree angle. It is special because it side lengths are always in the same ratio. The length of the hypotenuse is twice the length of the shorter leg and the length of the longer leg is the length of the shorter leg.
Simply put, the ratio in order of the sides opposite to the angles for any value of is : : . It is a simple "pneumonic" ratio that will help you remember the ratio and each part corresponds to the part of the 30-60-90 triangle. (For example: the x corresponds to the angle)
Proofs
Consider a right triangle with angles \(30^\circ\), \(60^\circ\), and \(90^\circ\). Let:
- \(a\): side opposite the \(30^\circ\) angle
- \(b\): side opposite the \(60^\circ\) angle
- \(c\): hypotenuse
Using trigonometric identities
1. Hypotenuse
\(\sin(30^\circ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{AB}{AC}\)
And:
\(\sin(30^\circ) = \frac{1}{2} = \frac{AB}{AC}\)
2. Side
\(\cos(30^\circ) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{BC}{AC}\)
Since \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\):
In conclusion, the side lengths are:
\begin{array}{l} \text{Opposite } 30^\circ: AB \\ \text{Opposite } 60^\circ: AB\sqrt{3} \\ \text{Hypotenuse } : 2AB \end{array}
Therefore, the side ratios are
This article is a stub. Help us out by expanding it.