Difference between revisions of "2003 AMC 10A Problems/Problem 22"

(See Also)
Line 7: Line 7:
  
 
== Solution ==
 
== Solution ==
 +
=== Solution 1 ===
 
Since <math>ABCD</math> is a rectangle, <math>CD=AB=8</math>.  
 
Since <math>ABCD</math> is a rectangle, <math>CD=AB=8</math>.  
  
Line 40: Line 41:
  
 
<math>GF=2 \cdot FD+8=2\cdot6+8=20 \Rightarrow B</math>
 
<math>GF=2 \cdot FD+8=2\cdot6+8=20 \Rightarrow B</math>
 +
 +
=== Solution 2 ===
 +
Since <math>ABCD</math> is a rectangle, <math>CD=3</math>, <math>EA=5</math>, and <math>CD=8</math>. From the [[Pythagorean Theorem]], <math>CE^2=CD^2+DE^2=80\Rightarrow CE=4\sqrt{5}</math>.
 +
==== Lemma ====
 +
Statement: <math>GCH \approx GEA</math>
 +
 +
Proof: <math>\angle CGH=\angle EGA</math>, obviously.
 +
 +
<math>\begin{eqnarray}
 +
\angle HCE=180^{\circ}-\angle CHG\\
 +
\angle DCE=\angle CHG-90^{\circ}\\
 +
\angle CEED=180-\angle CHG\\
 +
\angle GEA=\angle GCH
 +
\end{eqnarray}</math>
 +
 +
Since two angles of the triangles are equal, the third angles must equal each other. Therefore, the triangles are similar.
 +
 +
 +
 +
Let <math>GC=x</math>.
 +
 +
<cmath>\begin{eqnarray}
 +
\dfrac{x}{3}=\dfrac{x+4\sqrt{5}}{5}\\
 +
5x=3x+12\sqrt{5}\\
 +
2x=12\sqrt{5}\\
 +
x=6\sqrt{5}
 +
\end{eqnarray}</cmath>
 +
 +
Also, <math>\triangle GFE\approx \triangle CDE</math>, therefore
 +
 +
<cmath>\dfrac{8}{4\sqrt{5}}=\dfrac{GF}{10\sqrt{5}}</cmath>
 +
 +
We can multiply both sides by <math>\sqrt{5}</math> to get that <math>GF is twice of 10, or </math>20\Rightarrow \mathrm{(B)}$
  
 
== See Also ==
 
== See Also ==

Revision as of 09:58, 6 March 2008

Problem

In rectangle $ABCD$, we have $AB=8$, $BC=9$, $H$ is on $BC$ with $BH=6$, $E$ is on $AD$ with $DE=4$, line $EC$ intersects line $AH$ at $G$, and $F$ is on line $AD$ with $GF \perp AF$. Find the length of $GF$.

2003amc10a22.gif

$\mathrm{(A) \ } 16\qquad \mathrm{(B) \ } 20\qquad \mathrm{(C) \ } 24\qquad \mathrm{(D) \ } 28\qquad \mathrm{(E) \ } 30$

Solution

Solution 1

Since $ABCD$ is a rectangle, $CD=AB=8$.

Since $ABCD$ is a rectangle and $GF \perp AF$, $\angle GFE = \angle CDE = \angle ABC = 90^\circ$.

Since $ABCD$ is a rectangle, $AD || BC$.

So, $AH$ is a transversal, and $\angle GAF = \angle AHB$.

This is sufficient to prove that $GFE \approx CDE$ and $GFA \approx ABH$.

Using ratios:

$\frac{GF}{FE}=\frac{CD}{DE}$

$\frac{GF}{FD+4}=\frac{8}{4}=2$

$GF=2 \cdot (FD+4)=2 \cdot FD+8$

$\frac{GF}{FA}=\frac{AB}{BH}$

$\frac{GF}{FD+9}=\frac{8}{6}=\frac{4}{3}$

$GF=\frac{4}{3} \cdot (FD+9)=\frac{4}{3} \cdot FD+12$

Since $GF$ can't have 2 different lengths, both expressions for $GF$ must be equal.

$2 \cdot FD+8=\frac{4}{3} \cdot FD+12$

$\frac{2}{3} \cdot FD=4$

$FD=6$

$GF=2 \cdot FD+8=2\cdot6+8=20 \Rightarrow B$

Solution 2

Since $ABCD$ is a rectangle, $CD=3$, $EA=5$, and $CD=8$. From the Pythagorean Theorem, $CE^2=CD^2+DE^2=80\Rightarrow CE=4\sqrt{5}$.

Lemma

Statement: $GCH \approx GEA$

Proof: $\angle CGH=\angle EGA$, obviously.

$\begin{eqnarray} \angle HCE=180^{\circ}-\angle CHG\\ \angle DCE=\angle CHG-90^{\circ}\\ \angle CEED=180-\angle CHG\\ \angle GEA=\angle GCH \end{eqnarray}$ (Error compiling LaTeX. Unknown error_msg)

Since two angles of the triangles are equal, the third angles must equal each other. Therefore, the triangles are similar.


Let $GC=x$.

\begin{eqnarray} \dfrac{x}{3}=\dfrac{x+4\sqrt{5}}{5}\\ 5x=3x+12\sqrt{5}\\ 2x=12\sqrt{5}\\ x=6\sqrt{5} \end{eqnarray}

Also, $\triangle GFE\approx \triangle CDE$, therefore

\[\dfrac{8}{4\sqrt{5}}=\dfrac{GF}{10\sqrt{5}}\]

We can multiply both sides by $\sqrt{5}$ to get that $GF is twice of 10, or$20\Rightarrow \mathrm{(B)}$

See Also

2003 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions