Difference between revisions of "User:Temperal/The Problem Solver's Resource1"
(→Terminology and Notation: explanation) |
(→Sum of Angle Formulas: hm) |
||
Line 49: | Line 49: | ||
===Sum of Angle Formulas=== | ===Sum of Angle Formulas=== | ||
<math>\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B</math> | <math>\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B</math> | ||
+ | |||
+ | If we can prove this one, the other ones can be derived easily using the "Basic Facts" identities above. In fact, we can simply prove the addition case, for plugging <math>A=-B</math> into the addition case gives the subtraction case. | ||
+ | |||
+ | As it turns out, there's quite a nice geometric proof of the addition case, though other methods, such as de Moivre's Theorem, exist. | ||
+ | |||
+ | <!-- add proof --> | ||
<math>\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B</math> | <math>\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B</math> | ||
<math>\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}</math> | <math>\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}</math> | ||
+ | |||
+ | The following identities can be easily derived by plugging <math>A=B</math> into the above: | ||
<math>\sin2A=2\sin A \cos A</math> | <math>\sin2A=2\sin A \cos A</math> |
Revision as of 18:35, 10 January 2009
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 1. |
Trigonometric Formulas
Note that all measurements are in radians.
Basic Facts
The above can all be seen clearly by examining the graphs or plotting on a unit circle - the reader can figure that out themselves.
Terminology and Notation
, but $\cot A\ne\tan^{-1} A}$ (Error compiling LaTeX. Unknown error_msg), the former being the reciprocal and the latter the inverse.
, but $\csc A\ne\sin^{-1} A}$ (Error compiling LaTeX. Unknown error_msg).
, but $\sec A\ne\cos^{-1} A}$ (Error compiling LaTeX. Unknown error_msg).
Speaking of inverses:
Sum of Angle Formulas
If we can prove this one, the other ones can be derived easily using the "Basic Facts" identities above. In fact, we can simply prove the addition case, for plugging into the addition case gives the subtraction case.
As it turns out, there's quite a nice geometric proof of the addition case, though other methods, such as de Moivre's Theorem, exist.
The following identities can be easily derived by plugging into the above:
or or
Pythagorean identities
for all .
Other Formulas
Law of Cosines
In a triangle with sides , , and opposite angles , , and , respectively,
and:
Law of Sines
Law of Tangents
For any and such that ,
Area of a Triangle
The area of a triangle can be found by