Difference between revisions of "1985 AJHSME Problems/Problem 8"

(New page: ==Problem== If <math>a = - 2</math>, the largest number in the set <math>\{ - 3a, 4a, \frac {24}{a}, a^2, 1\}</math> is <math>\text{(A)}\ -3a \qquad \text{(B)}\ 4a \qquad \text{(C)}\ \fr...)
 
Line 7: Line 7:
 
==Solution==
 
==Solution==
  
{{Solution}}
+
Since all the numbers are small, we can just evaluate the set to be <cmath>\{ (-3)(-2), 4(-2), \frac{24}{-2}, (-2)^2, 1 \}= \{ 6, -8, -12, 4, 1 \}</cmath>
 +
 
 +
The largest number is <math>6</math>, which corresponds to <math>-3a</math>.
 +
 
 +
<math>\boxed{\text{A}}</math>
  
 
==See Also==
 
==See Also==
  
 
[[1985 AJHSME Problems]]
 
[[1985 AJHSME Problems]]

Revision as of 21:50, 13 January 2009

Problem

If $a = - 2$, the largest number in the set $\{ - 3a, 4a, \frac {24}{a}, a^2, 1\}$ is

$\text{(A)}\ -3a \qquad \text{(B)}\ 4a \qquad \text{(C)}\ \frac {24}{a} \qquad \text{(D)}\ a^2 \qquad \text{(E)}\ 1$

Solution

Since all the numbers are small, we can just evaluate the set to be \[\{ (-3)(-2), 4(-2), \frac{24}{-2}, (-2)^2, 1 \}= \{ 6, -8, -12, 4, 1 \}\]

The largest number is $6$, which corresponds to $-3a$.

$\boxed{\text{A}}$

See Also

1985 AJHSME Problems