Difference between revisions of "Combinatorial identity"

(Examples)
(Another identity (sum_{i=0}^k k choose i = 2k choose k -- what is this called?!))
Line 1: Line 1:
 
 
==Hockey-Stick Identity==
 
==Hockey-Stick Identity==
 
For <math>n,r\in\mathbb{N}, n>r,\sum^n_{i=r}{i\choose r}={n+1\choose r+1}</math>.
 
For <math>n,r\in\mathbb{N}, n>r,\sum^n_{i=r}{i\choose r}={n+1\choose r+1}</math>.
Line 37: Line 36:
 
==Vandermonde's Identity==
 
==Vandermonde's Identity==
 
Vandermonde's Identity states that <math>\sum_{k=0}^r\binom mk\binom n{r-k}=\binom{m+n}r</math>, which can be proven combinatorially by noting that any combination of <math>r</math> objects from a group of <math>m+n</math> objects must have some <math>0\le k\le r</math> objects from group <math>m</math> and the remaining from group <math>n</math>.
 
Vandermonde's Identity states that <math>\sum_{k=0}^r\binom mk\binom n{r-k}=\binom{m+n}r</math>, which can be proven combinatorially by noting that any combination of <math>r</math> objects from a group of <math>m+n</math> objects must have some <math>0\le k\le r</math> objects from group <math>m</math> and the remaining from group <math>n</math>.
 +
 +
==Another Identity==
 +
 +
\[
 +
\sum_{i=0}^k \binom{k}{i}^2=\binom{2k}{k}
 +
\]
 +
 +
===Hat Proof===
 +
We have <math>2k</math> different hats. We split them into two groups, each with k hats: then we choose <math>i</math> hats from the first group and <math>k-i</math> hats from the second group. This may be done in <math>\binom{k}{i}^2</math> ways. Evidently, to generate all possible choices of <math>k</math> hats from the <math>2k</math> hats, we must choose <math>i=0,1,\cdots,k</math> hats from the first <math>k</math> and the remaining <math>k-i</math> hats from the second <math>k</math>; the sum over all such <math>i</math> is the number of ways of choosing <math>k</math> hats from <math>2k</math>. Therefore  <math>\sum_{i=0}^k \binom{k}{i}^2=\binom{2k}{k}</math>, as desired.
  
 
== Examples ==
 
== Examples ==

Revision as of 10:29, 10 March 2009

Hockey-Stick Identity

For $n,r\in\mathbb{N}, n>r,\sum^n_{i=r}{i\choose r}={n+1\choose r+1}$.

This identity is known as the hockey-stick identity because, on Pascal's triangle, when the addends represented in the summation and the sum itself are highlighted, a hockey-stick shape is revealed.


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Proof

Inductive Proof

This identity can be proven by induction on $n$.

Base Case Let $n=r$.

$\sum^n_{i=r}{i\choose r}=\sum^r_{i=r}{i\choose r}={r\choose r}=1={r+1\choose r+1}$.

Inductive Step Suppose, for some $k\in\mathbb{N}, k>r$, $\sum^k_{i=r}{i\choose r}={k+1\choose r+1}$. Then $\sum^{k+1}_{i=r}{i\choose r}=\left(\sum^k_{i=r}{i\choose r}\right)+{k+1\choose r}={k+1\choose r+1}+{k+1\choose r}={k+2\choose r+1}$.

Algebraic Proof

It can also be proven algebraically with Pascal's Identity, ${n \choose k}={n-1\choose k-1}+{n-1\choose k}$. Note that

${r \choose r}+{r+1 \choose r}+{r+2 \choose r}+\cdots+{r+a \choose r}$ $={r+1 \choose r+1}+{r+1 \choose r}+{r+2 \choose r}+\cdots+{r+a \choose r}$ $={r+2 \choose r+1}+{r+2 \choose r}+\cdots+{r+a \choose r}=\cdots={r+a \choose r-1}+{r+a \choose r}={r+a+1 \choose r+1}$, which is equivalent to the desired result.

Combinatorial Proof

Imagine that we are distributing $n$ indistinguishable candies to $k$ distinguishable children. By a direct application of Balls and Urns, there are ${n+k-1\choose k-1}$ ways to do this. Alternatively, we can first give $0\le i\le n$ candies to the oldest child so that we are essentially giving $n-i$ candies to $k-1$ kids and again, with Balls and Urns, ${n+k-1\choose k-1}=\sum_{i=0}^n{n+k-2-i\choose k-2}$, which simplifies to the desired result.

Vandermonde's Identity

Vandermonde's Identity states that $\sum_{k=0}^r\binom mk\binom n{r-k}=\binom{m+n}r$, which can be proven combinatorially by noting that any combination of $r$ objects from a group of $m+n$ objects must have some $0\le k\le r$ objects from group $m$ and the remaining from group $n$.

Another Identity

\[ \sum_{i=0}^k \binom{k}{i}^2=\binom{2k}{k} \]

Hat Proof

We have $2k$ different hats. We split them into two groups, each with k hats: then we choose $i$ hats from the first group and $k-i$ hats from the second group. This may be done in $\binom{k}{i}^2$ ways. Evidently, to generate all possible choices of $k$ hats from the $2k$ hats, we must choose $i=0,1,\cdots,k$ hats from the first $k$ and the remaining $k-i$ hats from the second $k$; the sum over all such $i$ is the number of ways of choosing $k$ hats from $2k$. Therefore $\sum_{i=0}^k \binom{k}{i}^2=\binom{2k}{k}$, as desired.

Examples

See also