Difference between revisions of "1988 AJHSME Problems/Problem 4"

(New page: ==Problem== The figure consists of alternating light and dark squares. The number of dark squares exceeds the number of light squares by \text{(A)}\ 7 \qquad \text{(B)}\ 8 \qquad \text{(...)
 
m (Fixed a few errors)
Line 3: Line 3:
 
The figure consists of alternating light and dark squares. The number of dark squares exceeds the number of light squares by
 
The figure consists of alternating light and dark squares. The number of dark squares exceeds the number of light squares by
  
\text{(A)}\ 7 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 11
+
<math>\text{(A)}\ 7 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 11</math>
  
 
<asy>
 
<asy>
Line 32: Line 32:
  
 
==Solution==
 
==Solution==
 +
 
If, for a moment, we disregard the white squares, we notice that the number of black squares in each row increases by 1 continuously as we go down the pyramid.
 
If, for a moment, we disregard the white squares, we notice that the number of black squares in each row increases by 1 continuously as we go down the pyramid.
Thus, the number of black squares is <math> 1 + 2 + ... + 8 </math>
+
Thus, the number of black squares is <math> 1 + 2 + \cdots + 8 </math>.
  
Same goes for the white squares, except it starts a row later, making is <math> 1 + 2 + ... + 7</math>
+
Same goes for the white squares, except it starts a row later, making it <math> 1 + 2 + \cdots + 7</math>.
  
 
Subtracting the number of white squares from the number of black squares...
 
Subtracting the number of white squares from the number of black squares...
<math> 1 + 2 + ... + 7 + 8 - (1 + 2 + ... + 7) </math>
+
<cmath>1 + 2 + \cdots + 7 + 8 - (1 + 2 + \cdots + 7) = 8</cmath>
<math> = 8</math>
 
  
 
==See Also==
 
==See Also==
  
 
[[1988 AJHSME Problems]]
 
[[1988 AJHSME Problems]]

Revision as of 16:06, 14 April 2009

Problem

The figure consists of alternating light and dark squares. The number of dark squares exceeds the number of light squares by

$\text{(A)}\ 7 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 10 \qquad \text{(E)}\ 11$

[asy] unitsize(12); for(int a=0; a<7; ++a)  {   fill((2a,0)--(2a+1,0)--(2a+1,1)--(2a,1)--cycle,black);   draw((2a+1,0)--(2a+2,0));  } for(int b=7; b<15; ++b)  {   fill((b,14-b)--(b+1,14-b)--(b+1,15-b)--(b,15-b)--cycle,black);  } for(int c=1; c<7; ++c)  {   fill((c,c)--(c+1,c)--(c+1,c+1)--(c,c+1)--cycle,black);  } for(int d=1; d<6; ++d)  {   draw((2d+1,1)--(2d+2,1));  } fill((6,4)--(7,4)--(7,5)--(6,5)--cycle,black); draw((5,4)--(6,4)); fill((7,5)--(8,5)--(8,6)--(7,6)--cycle,black); draw((7,4)--(8,4)); fill((8,4)--(9,4)--(9,5)--(8,5)--cycle,black); draw((9,4)--(10,4)); label("same",(6.3,2.45),N); label("pattern here",(7.5,1.4),N); [/asy]

Solution

If, for a moment, we disregard the white squares, we notice that the number of black squares in each row increases by 1 continuously as we go down the pyramid. Thus, the number of black squares is $1 + 2 + \cdots + 8$.

Same goes for the white squares, except it starts a row later, making it $1 + 2 + \cdots + 7$.

Subtracting the number of white squares from the number of black squares... \[1 + 2 + \cdots + 7 + 8 - (1 + 2 + \cdots + 7) = 8\]

See Also

1988 AJHSME Problems