Difference between revisions of "2001 IMO Shortlist Problems/A4"
m (New page: == Problem == Find all functions <math>f: \mathbb{R} \rightarrow \mathbb{R}</math>, satisfying <center><math>f(xy)(f(x) - f(y)) = (x - y)f(x)f(y)</math></center> for all <math>x,y</math>. ...) |
Brut3Forc3 (talk | contribs) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | {{ | + | Assume <math>f(1) = 0</math>. Take <math>y = 1</math>. We get <math>f^2(x) = 0,\ \forall x</math>, so <math>f(x) = 0,\ \forall x</math>. This is a solution, so we can take it out of the way: assume <math>f(1)\ne 0</math>. |
+ | |||
+ | <math>y = 1\Rightarrow f(x)[f(x) - f(1)] = (x - 1)f(x)f(1)</math>. We either have <math>f(x) = 0</math> or <math>f(x) = f(1)x</math>, so for every <math>x</math>, <math>f(x)\in\{0,f(1)x\}</math>. In particular, <math>f(0) = 0</math>. | ||
+ | |||
+ | Assume <math>f(y) = 0</math>. We get <math>f(x)f(xy) = 0,\ \forall x</math>. This means that <math>f(a),f(b)\ne 0\Rightarrow f\left(\frac ab\right)\ne 0\ (*)</math> (<math>\frac ab</math> is defined because <math>f(b)\ne 0\Rightarrow b\ne 0</math>). Assume now that <math>x\ne y</math> and <math>f(x),f(y)\ne 0</math>. We get <math>f(x) = f(1)x,\ f(y) = f(1)y</math>, and after replacing everything we get <math>f(xy) = f(1)xy\ne 0</math>, so <math>x\ne y,\ f(x),f(y)\ne 0\Rightarrow f(xy)\ne 0\ (**)</math>. Assume now <math>f(x)\ne 0</math>. From <math>(*)</math> we get <math>f\left(\frac 1x\right)\ne 0</math>, and after applying <math>(*)</math> again to <math>a = x,b = \frac 1x</math> we get <math>f(x^2)\ne 0\ (***)</math>. We can now see that <math>(**),(***)</math> combine to <math>f(x),f(y)\ne 0\Rightarrow f(xy)\ne 0\ (\#)</math>. | ||
+ | |||
+ | Let <math>G = \{x\in\mathbb R|f(x)\ne 0\}</math>. <math>(*)</math> and <math>(\#)</math> simply say that <math>(G,\ \cdot)</math> is a subgroup of <math>(\mathbb R^{*},\ \cdot)</math>. | ||
+ | |||
+ | Conversely, let <math>G</math> be a subgroup of the multiplicative group <math>\mathbb R^*</math>. Take <math>f(x) = \left\{\begin{array}{c}f(1)x,\ x\in G \\ | ||
+ | 0,\ x\not \in G\end{array}</math>. It's easy to check the condition <math>f(xy)[f(x) - f(y)] = (x - y)f(x)f(y)</math>. | ||
== Resources == | == Resources == |
Revision as of 22:13, 17 July 2009
Problem
Find all functions , satisfying
for all .
Solution
Assume . Take . We get , so . This is a solution, so we can take it out of the way: assume .
. We either have or , so for every , . In particular, .
Assume . We get . This means that ( is defined because ). Assume now that and . We get , and after replacing everything we get , so . Assume now . From we get , and after applying again to we get . We can now see that combine to .
Let . and simply say that is a subgroup of .
Conversely, let be a subgroup of the multiplicative group . Take $f(x) = \left\{\begin{array}{c}f(1)x,\ x\in G \\ 0,\ x\not \in G\end{array}$ (Error compiling LaTeX. Unknown error_msg). It's easy to check the condition .