Difference between revisions of "2008 AMC 12B Problems/Problem 17"
Kwonalbert (talk | contribs) (New page: C)18) |
|||
Line 1: | Line 1: | ||
− | C)18 | + | Let the coordinates of <math>A</math> be <math>(m, m^2)</math> and the coordinates of <math>C</math> be <math>(n, n^2)</math>. Since the line <math>AB</math> is parallel to the <math>x</math>-axis, the coordinates of <math>B</math> must then be <math>(-m, m^2)</math>. |
+ | Then the slope of line <math>AC</math> is <math>\frac{m^2-n^2}{m-n}=\frac{(m+n)(m-n)}{m-n}=m+n</math>. | ||
+ | The slope of line <math>BC</math> is <math>\frac{m^2-n^2}{-m-n}=-\frac{(m+n)(m-n)}{m+n}=-(m-n)</math>. | ||
+ | |||
+ | Supposing <math>\angle A=90^\circ</math>, then <math>AC</math> is perpendicular to <math>AB</math> and, it follows, to the <math>x</math>-axis, making <math>AB</math> a segment of the line x=m. But that would mean that the coordinates of <math>C</math> <math>(m, m^2)</math>, contradicting the given that points <math>A</math> and <math>C</math> are distinct. So <math>\angle A</math> is not <math>90^\circ</math>. By a similar logic, neither is <math>\angle B</math>. | ||
+ | |||
+ | This means that <math>\angle C=90^\circ</math> and <math>AC</math> is perpendicular to <math>BC</math>. So the slope of <math>BC</math> is the negative reciprocal of the slope of <math>AC</math>, yielding <math>m+n=\frac{1}{m-n}</math> <math>\Rightarrow</math> <math>m^2-n^2=1</math>. | ||
+ | |||
+ | Because <math>m^2-n^2</math> is the length of the altitude of triangle <math>ABC</math> from <math>AB</math>, and <math>2m</math> is the length of <math>AB</math>, the area of <math>\triangle ABC=m(m^2-n^2)=2008</math>. Since <math>m^2-n^2=1</math>, <math>m=2008</math>. | ||
+ | Substituting, <math>2008^2-n^2=1</math> <math>\Rightarrow</math> <math>n^2=2008^2-1=4032063</math>, whose digits sum to <math>18 \Rightarrow \textbf{(C)}</math>. |
Revision as of 01:34, 23 December 2009
Let the coordinates of be and the coordinates of be . Since the line is parallel to the -axis, the coordinates of must then be . Then the slope of line is . The slope of line is .
Supposing , then is perpendicular to and, it follows, to the -axis, making a segment of the line x=m. But that would mean that the coordinates of , contradicting the given that points and are distinct. So is not . By a similar logic, neither is .
This means that and is perpendicular to . So the slope of is the negative reciprocal of the slope of , yielding .
Because is the length of the altitude of triangle from , and is the length of , the area of . Since , . Substituting, , whose digits sum to .