Difference between revisions of "1963 IMO Problems/Problem 4"

(New page: ==Problem== Find all solutions <math>x_1,x_2,x_3,x_4,x_5</math> of the system <center><math>\begin{eqnarray} x_5+x_2&=&yx_1\\ x_1+x_3&=&yx_2\\ x_2+x_4&=&yx_3\\ x_3+x_5&=&yx_4\\ x_4+x_1&=&y...)
 
Line 10: Line 10:
  
 
==Solution==
 
==Solution==
{{solution}}
+
Notice: The following words are Chinese.
 
+
首先,我们可以将以上5个方程相加,得到:
 +
2(x_1+x_2+x_3+x_4+x_5)&=&y(x_1+x_2+x_3+x_4+x_5)
 +
当<math>x_1+x_2+x_3+x_4+x_5&=&0</math>时,因为x_1,x_2,x_3,x_4,x_5关于原方程组轮换对称,所以
 +
<math>x_1=x_2=x_3=x_4=x_5=0</math>\\
 +
若反之,则方程两边同除以<math>(x_1+x_2+x_3+x_4+x_5)</math>,得到<math>y=2</math>,显然解为
 +
<math>x_1=x_2=x_3=x_4=x_5</math>
 +
综上所述,最终答案为<math>x_1=x_2=x_3=x_4=x_5</math>
 
==See Also==
 
==See Also==
  
 
{{IMO box|year=1963|num-b=3|num-a=5}}
 
{{IMO box|year=1963|num-b=3|num-a=5}}

Revision as of 02:11, 21 February 2010

Problem

Find all solutions $x_1,x_2,x_3,x_4,x_5$ of the system

$\begin{eqnarray}

x_5+x_2&=&yx_1\\ x_1+x_3&=&yx_2\\ x_2+x_4&=&yx_3\\ x_3+x_5&=&yx_4\\

x_4+x_1&=&yx_5,\end{eqnarray}$ (Error compiling LaTeX. Unknown error_msg)

where $y$ is a parameter.

Solution

Notice: The following words are Chinese. 首先,我们可以将以上5个方程相加,得到: 2(x_1+x_2+x_3+x_4+x_5)&=&y(x_1+x_2+x_3+x_4+x_5) 当$x_1+x_2+x_3+x_4+x_5&=&0$ (Error compiling LaTeX. Unknown error_msg)时,因为x_1,x_2,x_3,x_4,x_5关于原方程组轮换对称,所以 $x_1=x_2=x_3=x_4=x_5=0$\\ 若反之,则方程两边同除以$(x_1+x_2+x_3+x_4+x_5)$,得到$y=2$,显然解为 $x_1=x_2=x_3=x_4=x_5$ 综上所述,最终答案为$x_1=x_2=x_3=x_4=x_5$

See Also

1963 IMO (Problems) • Resources
Preceded by
Problem 3
1 2 3 4 5 6 Followed by
Problem 5
All IMO Problems and Solutions